

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Avocado 42.0 documentation

Avocado User’s Guide

Contents:

	About Avocado

	Getting Started
	Installing Avocado

	Using Avocado

	Writing a Simple Test

	Running A More Complex Test Job

	Interrupting The Job On First Failed Test (failfast)

	Running Tests With An External Runner

	Debugging tests

	Writing Avocado Tests
	Basic example

	Saving test generated (custom) data

	Accessing test parameters

	Using a multiplex file

	Advanced logging capabilities

	unittest.TestCase heritage

	Setup and cleanup methods

	Running third party test suites

	Fetching asset files

	Test Output Check and Output Record Mode

	Test log, stdout and stderr in native Avocado modules

	Avocado Tests run on a separate process

	Setting a Test Timeout

	Test Tags

	Python unittest Compatibility Limitations And Caveats

	Environment Variables for Simple Tests

	Simple Tests BASH extensions

	Wrap Up

	Result Formats
	Results for human beings

	Machine readable results

	Multiple results at once

	Exit Codes

	Implementing other result formats

	Configuration
	Config file parsing order

	Plugin config files

	Parsing order recap

	Order of precedence for values used in tests

	Config plugin

	Avocado Data Directories

	Test discovery
	The order of test loaders

	Logging system
	Tweaking the UI

	Storing custom logs

	Paginator

	Test variants - Mux
	Mux internals

	Mux API

	Nodes

	Keys and Values

	Variants

	Resolution order

	Injecting files

	Multiple files

	Advanced YAML tags

	!include

	!using

	!remove_node

	!remove_value

	!mux

	Complete example

	Job Replay

	Job Diff

	Running Tests Remotely
	Running Tests on a Remote Host

	Running Tests on a Virtual Machine

	Running Tests on a Docker container

	Environment Variables

	Debugging with GDB
	Transparent Execution of Executables

	avocado.utils.gdb APIs

	Wrap executables run by tests
	Usage

	Caveats

	Plugin System
	Listing plugins

	Writing a plugin

Advanced Topics and Maintenance

	Reference Guide
	Job, test and identifiers

	Test Types

	Test Statuses

	Libraries and APIs

	Test Resolution

	Results Specification

	Job Pre and Post Scripts

	Job Cleanup

	Contribution and Community Guide
	Hacking and Using Avocado

	Contact information

	Contributing to Avocado

	Tests Repositories

	Avocado development tips
	Interrupting test

	In tree utils

	Line-profiler

	Remote debug with Eclipse

	Using Trello cards in Eclipse

	Releasing avocado
	Bump the version number

	Which repositories you should pay attention to

	Tag all repositories

	Build RPMs

	Sign Packages

	Upload packages to repository

	Write release notes

	Upload package to PyPI

	Send e-mails to avocado-devel and other places

API Reference

	Test APIs

	Utilities APIs

	Internal (Core) APIs

	Extension (plugin) APIs

Avocado Release Notes

	Release Notes

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

About Avocado

Avocado is a set of tools and libraries to help with automated testing.

One can call it a test framework with benefits. Native tests are
written in Python and they follow the unittest [http://docs.python.org/library/unittest.html#module-unittest] pattern, but any
executable can serve as a test.

Avocado is composed of:

	A test runner that lets you execute tests. Those tests can be either written in your
language of choice, or be written in Python and use the available libraries. In both
cases, you get facilities such as automated log and system information collection.

	Libraries that help you write tests in a concise, yet expressive and powerful way.
You can find more information about what libraries are intended for test writers
at Libraries and APIs.

	Plugins that can extend and add new functionality
to the Avocado Framework.

Avocado tries as much as possible to comply with standard Python testing
technology. Tests written using the Avocado API are derived from the unittest
class, while other methods suited to functional and performance testing were
added. The test runner is designed to help people to run their tests while
providing an assortment of system and logging facilities, with no effort,
and if you want more features, then you can start using the API features
progressively.

Mindmap from workshop (2015) demonstrating features on examples
available here [https://www.mindmeister.com/504616310].

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Getting Started

The first step towards using Avocado is, quite obviously, installing it.

Installing Avocado

Installing from Packages

Avocado is officially available in RPM packages for Fedora and
Enterprise Linux. Other RPM based distributions may package and ship
Avocado themselves. DEB package support is available in the source
tree (look at the contrib/packages/debian directory).

Avocado is primarily being developed on Fedora, but reasonable efforts
are being made to support other GNU/Linux based platforms.

Fedora

First, get the package repositories configuration file by running the following command:

sudo curl https://repos-avocadoproject.rhcloud.com/static/avocado-fedora.repo -o /etc/yum.repos.d/avocado.repo

Now check if you have the avocado and avocado-lts repositories configured by running:

sudo dnf repolist avocado avocado-lts
...
repo id repo name status
avocado Avocado 50
avocado-lts Avocado LTS (Long Term Stability) disabled

Regular users of Avocado will want to use the standard avocado
repository, which tracks the latest Avocado releases. For more
information about the LTS releases, please refer to the Avocado Long
Term Stability [https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html] thread and to your package management docs on
how to switch to the avocado-lts repo.

Finally, after deciding between regular Avocado releases or LTS, you
can install the RPM packages by running the following commands:

sudo dnf install avocado

Additionally, two other Avocado packages are available for Fedora:

	avocado-examples: contains example tests and other example files

	avocado-plugins-output-html: HTML job report plugin

Enterprise Linux

If you’re running either Red Hat Enterprise Linux or one of the derivatives
such as CentOS, just adapt to the following URL and commands:

If not already, enable epel (for RHEL7 it's following cmd)
sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
Add avocado repository and install avocado
sudo curl https://repos-avocadoproject.rhcloud.com/static/avocado-el.repo -o /etc/yum.repos.d/avocado.repo
sudo yum install avocado

As with Fedora, two other Avocado packages are available for
Enterprise Linux:

	avocado-examples: contains example tests and other example files

	avocado-plugins-output-html: HTML job report plugin

The LTS (Long Term Stability) repositories are also available for
Enterprise Linux. Please refer to the Avocado Long Term
Stability [https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html] thread and to your package management docs on how to
switch to the avocado-lts repo.

OpenSUSE

The OpenSUSE [https://build.opensuse.org/package/show/Virtualization:Tests/avocado] project packages LTS versions of Avocado. You can
install packages by running the following commands:

sudo zypper install avocado

Generic installation from a GIT repository

First make sure you have a basic set of packages installed. The
following applies to Fedora based distributions, please adapt to
your platform:

sudo yum install -y git gcc python-devel python-pip libvirt-devel libyaml-devel redhat-rpm-config xz-devel

Then to install Avocado from the git repository run:

git clone git://github.com/avocado-framework/avocado.git
cd avocado
sudo make requirements
sudo python setup.py install

Note that python and pip should point to the Python interpreter version 2.7.x.
If you’re having trouble to install, you can try again and use the command line
utilities python2.7 and pip2.7.

Please note that some Avocado functionality may be implemented by
optional plugins. To install say, the HTML report plugin, run:

cd optional_plugins/html
sudo python setup.py install

If you intend to hack on Avocado, you may want to look at Hacking and Using Avocado.

Installing from standard Python tools

Avocado can also be installed by the standard Python packaging tools,
namely pip. On most POSIX systems with Python >= 2.7 and pip
available, installation can be performed with the following commands:

pip install avocado-framework

Note

As a design decision, only the dependencies for the core
Avocado test runner will be installed. You may notice,
depending on your system, that some plugins will fail to load,
due to those missing dependencies.

If you want to install all the requirements for all plugins, you may
attempt to do so by running:

pip install -r https://raw.githubusercontent.com/avocado-framework/avocado/master/requirements.txt

The result, though, is highly dependent on your system setup, such as
having the right compilers, header files and libraries available. The
more predictable and complete Avocado experience can be achieved with
the official RPM packages.

Using Avocado

You should first experience Avocado by using the test runner, that is, the command
line tool that will conveniently run your tests and collect their results.

Running Tests

To do so, please run avocado with the run sub-command followed by
a test reference, which could be either a path to the file, or a
recognizable name:

$ avocado run /bin/true
JOB ID : 381b849a62784228d2fd208d929cc49f310412dc
JOB LOG : $HOME/avocado/job-results/job-2014-08-12T15.39-381b849a/job.log
TESTS : 1
 (1/1) /bin/true: PASS (0.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.01 s
JOB HTML : $HOME/avocado/job-results/job-2014-08-12T15.39-381b849a/html/results.html

You probably noticed that we used /bin/true as a test, and in accordance with our
expectations, it passed! These are known as simple tests, but there is also another
type of test, which we call instrumented tests. See more at Test Types or just
keep reading.

Note

Although in most cases running avocado run $test1 $test3 ...` is
fine, it can lead to argument vs. test name clashes. The safest
way to execute tests is ``avocado run --$argument1 --$argument2
-- $test1 $test2. Everything after – will be considered
positional arguments, therefore test names (in case of
avocado run)

Listing tests

You have two ways of discovering the tests. You can simulate the execution by
using the --dry-run argument:

avocado run /bin/true --dry-run
JOB ID : 00
JOB LOG : /tmp/avocado-dry-runSeWniM/job-2015-10-16T15.46-0000000/job.log
TESTS : 1
 (1/1) /bin/true: SKIP
RESULTS : PASS 0 | ERROR 0 | FAIL 0 | SKIP 1 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.00 s
JOB HTML : /tmp/avocado-dry-runSeWniM/job-2015-10-16T15.46-0000000/html/results.html

which supports all run arguments, simulates the run and even lists the test params.

The other way is to use list subcommand that lists the discovered tests
If no arguments provided, Avocado lists “default” tests per each plugin.
The output might look like this:

$ avocado list
INSTRUMENTED /usr/share/avocado/tests/abort.py
INSTRUMENTED /usr/share/avocado/tests/datadir.py
INSTRUMENTED /usr/share/avocado/tests/doublefail.py
INSTRUMENTED /usr/share/avocado/tests/doublefree.py
INSTRUMENTED /usr/share/avocado/tests/errortest.py
INSTRUMENTED /usr/share/avocado/tests/failtest.py
INSTRUMENTED /usr/share/avocado/tests/fiotest.py
INSTRUMENTED /usr/share/avocado/tests/gdbtest.py
INSTRUMENTED /usr/share/avocado/tests/gendata.py
INSTRUMENTED /usr/share/avocado/tests/linuxbuild.py
INSTRUMENTED /usr/share/avocado/tests/multiplextest.py
INSTRUMENTED /usr/share/avocado/tests/passtest.py
INSTRUMENTED /usr/share/avocado/tests/sleeptenmin.py
INSTRUMENTED /usr/share/avocado/tests/sleeptest.py
INSTRUMENTED /usr/share/avocado/tests/synctest.py
INSTRUMENTED /usr/share/avocado/tests/timeouttest.py
INSTRUMENTED /usr/share/avocado/tests/trinity.py
INSTRUMENTED /usr/share/avocado/tests/warntest.py
INSTRUMENTED /usr/share/avocado/tests/whiteboard.py
...

These Python files are considered by Avocado to contain INSTRUMENTED
tests.

Let’s now list only the executable shell scripts:

$ avocado list | grep ^SIMPLE
SIMPLE /usr/share/avocado/tests/env_variables.sh
SIMPLE /usr/share/avocado/tests/output_check.sh
SIMPLE /usr/share/avocado/tests/simplewarning.sh
SIMPLE /usr/share/avocado/tests/failtest.sh
SIMPLE /usr/share/avocado/tests/passtest.sh

Here, as mentioned before, SIMPLE means that those files are executables
treated as simple tests. You can also give the --verbose or -V flag to
display files that were found by Avocado, but are not considered Avocado tests:

$ avocado list examples/gdb-prerun-scripts/ -V
Type file
NOT_A_TEST examples/gdb-prerun-scripts/README
NOT_A_TEST examples/gdb-prerun-scripts/pass-sigusr1

SIMPLE: 0
INSTRUMENTED: 0
MISSING: 0
NOT_A_TEST: 2

Notice that the verbose flag also adds summary information.

Writing a Simple Test

This very simple example of simple test written in shell script:

$ echo '#!/bin/bash' > /tmp/simple_test.sh
$ echo 'exit 0' >> /tmp/simple_test.sh
$ chmod +x /tmp/simple_test.sh

Notice that the file is given executable permissions, which is a requirement for
Avocado to treat it as a simple test. Also notice that the script exits with status
code 0, which signals a successful result to Avocado.

Running A More Complex Test Job

You can run any number of test in an arbitrary order, as well as mix and match
instrumented and simple tests:

$ avocado run failtest.py sleeptest.py synctest.py failtest.py synctest.py /tmp/simple_test.sh
JOB ID : 86911e49b5f2c36caeea41307cee4fecdcdfa121
JOB LOG : $HOME/avocado/job-results/job-2014-08-12T15.42-86911e49/job.log
TESTS : 6
 (1/6) failtest.py:FailTest.test: FAIL (0.00 s)
 (2/6) sleeptest.py:SleepTest.test: PASS (1.00 s)
 (3/6) synctest.py:SyncTest.test: PASS (2.43 s)
 (4/6) failtest.py:FailTest.test: FAIL (0.00 s)
 (5/6) synctest.py:SyncTest.test: PASS (2.44 s)
 (6/6) /bin/true: PASS (0.00 s)
 (6/6) /tmp/simple_test.sh.1: PASS (0.02 s)
RESULTS : PASS 2 | ERROR 2 | FAIL 2 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 5.88 s
JOB HTML : $HOME/avocado/job-results/job-2014-08-12T15.42-86911e49/html/results.html

Interrupting The Job On First Failed Test (failfast)

The Avocado run command has the option --failfast on to exit the job
on first failed test:

$ avocado run --failfast on /bin/true /bin/false /bin/true /bin/true
JOB ID : eaf51b8c7d6be966bdf5562c9611b1ec2db3f68a
JOB LOG : $HOME/avocado/job-results/job-2016-07-19T09.43-eaf51b8/job.log
TESTS : 4
 (1/4) /bin/true: PASS (0.01 s)
 (2/4) /bin/false: FAIL (0.01 s)
Interrupting job (failfast).
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 2 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.02 s
JOB HTML : /home/apahim/avocado/job-results/job-2016-07-19T09.43-eaf51b8/html/results.html

The --failfast option accepts the argument off. Since it’s disabled
by default, the off argument only makes sense in replay jobs, when the
original job was executed with --failfast on.

Running Tests With An External Runner

It’s quite common to have organically grown test suites in most
software projects. These usually include a custom built, very specific
test runner that knows how to find and run their own tests.

Still, running those tests inside Avocado may be a good idea for
various reasons, including being able to have results in different
human and machine readable formats, collecting system information
alongside those tests (the Avocado’s sysinfo functionality), and
more.

Avocado makes that possible by means of its “external runner” feature. The
most basic way of using it is:

$ avocado run --external-runner=/path/to/external_runner foo bar baz

In this example, Avocado will report individual test results for tests
foo, bar and baz. The actual results will be based on the return
code of individual executions of /path/to/external_runner foo,
/path/to/external_runner bar and finally /path/to/external_runner baz.

As another way to explain an show how this feature works, think of the
“external runner” as some kind of interpreter and the individual tests as
anything that this interpreter recognizes and is able to execute. A
UNIX shell, say /bin/sh could be considered an external runner, and
files with shell code could be considered tests:

$ echo "exit 0" > /tmp/pass
$ echo "exit 1" > /tmp/fail
$ avocado run --external-runner=/bin/sh /tmp/pass /tmp/fail
JOB ID : 4a2a1d259690cc7b226e33facdde4f628ab30741
JOB LOG : /home/<user>/avocado/job-results/job-<date>-<shortid>/job.log
TESTS : 2
(1/2) /tmp/pass: PASS (0.01 s)
(2/2) /tmp/fail: FAIL (0.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.01 s
JOB HTML : /home/<user>/avocado/job-results/job-<date>-<shortid>/html/results.html

This example is pretty obvious, and could be achieved by giving
/tmp/pass and /tmp/fail shell “shebangs” (#!/bin/sh), making
them executable (chmod +x /tmp/pass /tmp/fail), and running them as
“SIMPLE” tests.

But now consider the following example:

$ avocado run --external-runner=/bin/curl http://local-avocado-server:9405/jobs/ \
 http://remote-avocado-server:9405/jobs/
JOB ID : 56016a1ffffaba02492fdbd5662ac0b958f51e11
JOB LOG : /home/<user>/avocado/job-results/job-<date>-<shortid>/job.log
TESTS : 2
(1/2) http://local-avocado-server:9405/jobs/: PASS (0.02 s)
(2/2) http://remote-avocado-server:9405/jobs/: FAIL (3.02 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 3.04 s
JOB HTML : /home/<user>/avocado/job-results/job-<date>-<shortid>/html/results.html

This effectively makes /bin/curl an “external test runner”, responsible for
trying to fetch those URLs, and reporting PASS or FAIL for each of them.

Debugging tests

When developing new tests, you frequently want to look straight at the
job log, without switching screens or having to “tail” the job log.

In order to do that, you can use avocado --show test run ... or
avocado run --show-job-log ... options:

$ avocado --show test run examples/tests/sleeptest.py
...
Job ID: f9ea1742134e5352dec82335af584d1f151d4b85

START 1-sleeptest.py:SleepTest.test

PARAMS (key=timeout, path=*, default=None) => None
PARAMS (key=sleep_length, path=*, default=1) => 1
Sleeping for 1.00 seconds
PASS 1-sleeptest.py:SleepTest.test

Test results available in $HOME/avocado/job-results/job-2015-06-02T10.45-f9ea174

As you can see, the UI output is suppressed and only the job log is shown,
making this a useful feature for test development and debugging.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Writing Avocado Tests

We are going to write an Avocado test in Python and we are going to inherit from
avocado.Test. This makes this test a so-called instrumented test.

Basic example

Let’s re-create an old time favorite, sleeptest [1]. It is so simple, it
does nothing besides sleeping for a while:

import time

from avocado import Test

class SleepTest(Test):

 def test(self):
 sleep_length = self.params.get('sleep_length', default=1)
 self.log.debug("Sleeping for %.2f seconds", sleep_length)
 time.sleep(sleep_length)

This is about the simplest test you can write for Avocado, while still
leveraging its API power.

What is an Avocado Test

As can be seen in the example above, an Avocado test is a method that
starts with test in a class that inherits from avocado.Test.

Multiple tests and naming conventions

You can have multiple tests in a single class.

To do so, just give the methods names that start with test, say
test_foo, test_bar and so on. We recommend you follow this naming
style, as defined in the PEP8 Function Names [https://www.python.org/dev/peps/pep-0008/#function-names] section.

For the class name, you can pick any name you like, but we also recommend
that it follows the CamelCase convention, also known as CapWords, defined
in the PEP 8 document under Class Names [https://www.python.org/dev/peps/pep-0008/].

Convenience Attributes

Note that the test class provides you with a number of convenience attributes:

	A ready to use log mechanism for your test, that can be accessed by means
of self.log. It lets you log debug, info, error and warning messages.

	A parameter passing system (and fetching system) that can be accessed by
means of self.params. This is hooked to the Multiplexer, about which
you can find that more information at Test variants - Mux.

Saving test generated (custom) data

Each test instance provides a so called whiteboard. It can be accessed
through self.whiteboard. This whiteboard is simply a string that will be
automatically saved to test results (as long as the output format supports it).
If you choose to save binary data to the whiteboard, it’s your responsibility to
encode it first (base64 is the obvious choice).

Building on the previously demonstrated sleeptest, suppose that you want to save the
sleep length to be used by some other script or data analysis tool:

def test(self):
 sleep_length = self.params.get('sleep_length', default=1)
 self.log.debug("Sleeping for %.2f seconds", sleep_length)
 time.sleep(sleep_length)
 self.whiteboard = "%.2f" % sleep_length

The whiteboard can and should be exposed by files generated by the available test result
plugins. The results.json file already includes the whiteboard for each test.
Additionally, we’ll save a raw copy of the whiteboard contents on a file named
whiteboard, in the same level as the results.json file, for your convenience
(maybe you want to use the result of a benchmark directly with your custom made scripts
to analyze that particular benchmark result).

Accessing test parameters

Each test has a set of parameters that can be accessed through
self.params.get($name, $path=None, $default=None).
Avocado finds and populates self.params with all parameters you define on
a Multiplex Config file (see Test variants - Mux). As an example, consider
the following multiplex file for sleeptest:

sleeptest:
 type: "builtin"
 length: !mux
 short:
 sleep_length: 0.5
 medium:
 sleep_length: 1
 long:
 sleep_length: 5

When running this example by avocado run $test --mux-yaml $file.yaml
three variants are executed and the content is injected into /run namespace
(see Test variants - Mux for details). Every variant contains variables
“type” and “sleep_length”. To obtain the current value, you need the name
(“sleep_length”) and its path. The path differs for each variant so it’s
needed to use the most suitable portion of the path, in this example:
/run/sleeptest/length/* or perhaps sleeptest/* might be enough. It depends
on how your setup looks like.

The default value is optional, but always keep in mind to handle them nicely.
Someone might be executing your test with different params or without any
params at all. It should work fine.

So the complete example on how to access the “sleep_length” would be:

self.params.get("sleep_length", "/*/sleeptest/*", 1)

There is one way to make this even simpler. It’s possible to define resolution
order, then for simple queries you can simply omit the path:

self.params.get("sleep_length", None, 1)
self.params.get("sleep_length", '*', 1)
self.params.get("sleep_length", default=1)

One should always try to avoid param clashes (multiple matching keys for given
path with different origin). If it’s not possible (eg. when
you use multiple yaml files) you can modify the default paths by modifying
--mux-path. What it does is it slices the params and iterates through the
paths one by one. When there is a match in the first slice it returns
it without trying the other slices. Although relative queries only match
from --mux-path slices.

There are many ways to use paths to separate clashing params or just to make
more clear what your query for. Usually in tests the usage of ‘*’ is sufficient
and the namespacing is not necessarily, but it helps make advanced usage
clearer and easier to follow.

When thinking of the path always think about users. It’s common to extend
default config with additional variants or combine them with different
ones to generate just the right scenarios they need. People might
simply inject the values elsewhere (eg. /run/sleeptest =>
/upstream/sleeptest) or they can merge other clashing file into the
default path, which won’t generate clash, but would return their values
instead. Then you need to clarify the path (eg. ‘*’ => sleeptest/*)

More details on that are in Test variants - Mux

Using a multiplex file

You may use the Avocado runner with a multiplex file to provide params and matrix
generation for sleeptest just like:

$ avocado run sleeptest.py --mux-yaml examples/tests/sleeptest.py.data/sleeptest.yaml
JOB ID : d565e8dec576d6040f894841f32a836c751f968f
JOB LOG : $HOME/avocado/job-results/job-2014-08-12T15.44-d565e8de/job.log
TESTS : 3
 (1/3) sleeptest.py:SleepTest.test;1: PASS (0.50 s)
 (2/3) sleeptest.py:SleepTest.test;2: PASS (1.00 s)
 (3/3) sleeptest.py:SleepTest.test;3: PASS (5.00 s)
RESULTS : PASS 3 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 6.50 s
JOB HTML : $HOME/avocado/job-results/job-2014-08-12T15.44-d565e8de/html/results.html

The --mux-yaml accepts either only $FILE_LOCATION or $INJECT_TO:$FILE_LOCATION.
As explained in Test variants - Mux without any path the content gets
injected into /run in order to be in the default relative path location.
The $INJECT_TO can be either relative path, then it’s injected into
/run/$INJECT_TO location, or absolute path (starting with '/'), then
it’s injected directly into the specified path and it’s up to the test/framework
developer to get the value from this location (using path or adding the path to
mux-path). To understand the difference execute those commands:

$ avocado multiplex -t -m examples/tests/sleeptest.py.data/sleeptest.yaml
$ avocado multiplex -t -m duration:examples/tests/sleeptest.py.data/sleeptest.yaml
$ avocado multiplex -t -m /my/location:examples/tests/sleeptest.py.data/sleeptest.yaml

Note that, as your multiplex file specifies all parameters for sleeptest, you
can’t leave the test ID empty:

$ scripts/avocado run --mux-yaml examples/tests/sleeptest/sleeptest.yaml
Empty test ID. A test path or alias must be provided

You can also execute multiple tests with the same multiplex file:

$ avocado run sleeptest.py synctest.py --mux-yaml examples/tests/sleeptest.py.data/sleeptest.yaml
JOB ID : cd20fc8d1714da6d4791c19322374686da68c45c
JOB LOG : $HOME/avocado/job-results/job-2016-05-04T09.25-cd20fc8/job.log
TESTS : 8
 (1/8) sleeptest.py:SleepTest.test;1: PASS (0.50 s)
 (2/8) sleeptest.py:SleepTest.test;2: PASS (1.00 s)
 (3/8) sleeptest.py:SleepTest.test;3: PASS (5.01 s)
 (4/8) sleeptest.py:SleepTest.test;4: PASS (10.00 s)
 (5/8) synctest.py:SyncTest.test;1: PASS (2.38 s)
 (6/8) synctest.py:SyncTest.test;2: PASS (2.47 s)
 (7/8) synctest.py:SyncTest.test;3: PASS (2.46 s)
 (8/8) synctest.py:SyncTest.test;4: PASS (2.45 s)
RESULTS : PASS 8 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 26.26 s
JOB HTML : $HOME/avocado/job-results/job-2016-05-04T09.25-cd20fc8/html/results.html

Advanced logging capabilities

Avocado provides advanced logging capabilities at test run time. These can
be combined with the standard Python library APIs on tests.

One common example is the need to follow specific progress on longer or more
complex tests. Let’s look at a very simple test example, but one multiple
clear stages on a single test:

import logging
import time

from avocado import Test

progress_log = logging.getLogger("progress")

class Plant(Test):

 def test_plant_organic(self):
 rows = self.params.get("rows", default=3)

 # Preparing soil
 for row in range(rows):
 progress_log.info("%s: preparing soil on row %s",
 self.name, row)

 # Letting soil rest
 progress_log.info("%s: letting soil rest before throwing seeds",
 self.name)
 time.sleep(2)

 # Throwing seeds
 for row in range(rows):
 progress_log.info("%s: throwing seeds on row %s",
 self.name, row)

 # Let them grow
 progress_log.info("%s: waiting for Avocados to grow",
 self.name)
 time.sleep(5)

 # Harvest them
 for row in range(rows):
 progress_log.info("%s: harvesting organic avocados on row %s",
 self.name, row)

From this point on, you can ask Avocado to show your logging stream, either
exclusively or in addition to other builtin streams:

$ avocado --show app,progress run plant.py

The outcome should be similar to:

JOB ID : af786f86db530bff26cd6a92c36e99bedcdca95b
JOB LOG : /home/cleber/avocado/job-results/job-2016-03-18T10.29-af786f8/job.log
TESTS : 1
 (1/1) plant.py:Plant.test_plant_organic: progress: 1-plant.py:Plant.test_plant_organic: preparing soil on row 0
progress: 1-plant.py:Plant.test_plant_organic: preparing soil on row 1
progress: 1-plant.py:Plant.test_plant_organic: preparing soil on row 2
progress: 1-plant.py:Plant.test_plant_organic: letting soil rest before throwing seeds
-progress: 1-plant.py:Plant.test_plant_organic: throwing seeds on row 0
progress: 1-plant.py:Plant.test_plant_organic: throwing seeds on row 1
progress: 1-plant.py:Plant.test_plant_organic: throwing seeds on row 2
progress: 1-plant.py:Plant.test_plant_organic: waiting for Avocados to grow
\progress: 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 0
progress: 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 1
progress: 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 2
PASS (7.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 7.01 s
JOB HTML : /home/cleber/avocado/job-results/job-2016-03-18T10.29-af786f8/html/results.html

The custom progress stream is combined with the application output, which
may or may not suit your needs or preferences. If you want the progress
stream to be sent to a separate file, both for clarity and for persistence,
you can run Avocado like this:

$ avocado run plant.py --store-logging-stream progress

The result is that, besides all the other log files commonly generated, there
will be another log file named progress.INFO at the job results
dir. During the test run, one could watch the progress with:

$ tail -f ~/avocado/job-results/latest/progress.INFO
10:36:59 INFO | 1-plant.py:Plant.test_plant_organic: preparing soil on row 0
10:36:59 INFO | 1-plant.py:Plant.test_plant_organic: preparing soil on row 1
10:36:59 INFO | 1-plant.py:Plant.test_plant_organic: preparing soil on row 2
10:36:59 INFO | 1-plant.py:Plant.test_plant_organic: letting soil rest before throwing seeds
10:37:01 INFO | 1-plant.py:Plant.test_plant_organic: throwing seeds on row 0
10:37:01 INFO | 1-plant.py:Plant.test_plant_organic: throwing seeds on row 1
10:37:01 INFO | 1-plant.py:Plant.test_plant_organic: throwing seeds on row 2
10:37:01 INFO | 1-plant.py:Plant.test_plant_organic: waiting for Avocados to grow
10:37:06 INFO | 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 0
10:37:06 INFO | 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 1
10:37:06 INFO | 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 2

The very same progress logger, could be used across multiple test methods
and across multiple test modules. In the example given, the test name is used
to give extra context.

unittest.TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase] heritage

Since an Avocado test inherits from unittest.TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase], you
can use all the assertion methods that its parent.

The code example bellow uses assertEqual [http://docs.python.org/library/unittest.html#unittest.TestCase.assertEqual], assertTrue [http://docs.python.org/library/unittest.html#unittest.TestCase.assertTrue] and assertIsInstace [http://docs.python.org/library/unittest.html#unittest.TestCase.assertIsInstance]:

from avocado import Test

class RandomExamples(Test):
 def test(self):
 self.log.debug("Verifying some random math...")
 four = 2 * 2
 four_ = 2 + 2
 self.assertEqual(four, four_, "something is very wrong here!")

 self.log.debug("Verifying if a variable is set to True...")
 variable = True
 self.assertTrue(variable)

 self.log.debug("Verifying if this test is an instance of test.Test")
 self.assertIsInstance(self, test.Test)

Running tests under other unittest [http://docs.python.org/library/unittest.html#module-unittest] runners

nose [https://nose.readthedocs.org/] is another Python testing framework
that is also compatible with unittest [http://docs.python.org/library/unittest.html#module-unittest].

Because of that, you can run avocado tests with the nosetests application:

$ nosetests examples/tests/sleeptest.py
.
--
Ran 1 test in 1.004s

OK

Conversely, you can also use the standard unittest.main() [http://docs.python.org/library/unittest.html#unittest.main] entry point to run an
Avocado test. Check out the following code, to be saved as dummy.py:

from avocado import Test
from unittest import main

class Dummy(Test):
 def test(self):
 self.assertTrue(True)

if __name__ == '__main__':
 main()

It can be run by:

$ python dummy.py
.
--
Ran 1 test in 0.000s

OK

Setup and cleanup methods

If you need to perform setup actions before/after your test, you may do so
in the setUp and tearDown methods, respectively. We’ll give examples
in the following section.

Running third party test suites

It is very common in test automation workloads to use test suites developed
by third parties. By wrapping the execution code inside an Avocado test module,
you gain access to the facilities and API provided by the framework. Let’s
say you want to pick up a test suite written in C that it is in a tarball,
uncompress it, compile the suite code, and then executing the test. Here’s
an example that does that:

#!/usr/bin/env python

import os

from avocado import Test
from avocado import main
from avocado.utils import archive
from avocado.utils import build
from avocado.utils import process

class SyncTest(Test):

 """
 Execute the synctest test suite.
 """
 default_params = {'sync_tarball': 'synctest.tar.bz2',
 'sync_length': 100,
 'sync_loop': 10}

 def setUp(self):
 """
 Set default params and build the synctest suite.
 """
 # Build the synctest suite
 self.cwd = os.getcwd()
 tarball_path = os.path.join(self.datadir, self.params.sync_tarball)
 archive.extract(tarball_path, self.srcdir)
 self.srcdir = os.path.join(self.srcdir, 'synctest')
 build.make(self.srcdir)

 def test(self):
 """
 Execute synctest with the appropriate params.
 """
 os.chdir(self.srcdir)
 cmd = ('./synctest %s %s' %
 (self.params.sync_length, self.params.sync_loop))
 process.system(cmd)
 os.chdir(self.cwd)

if __name__ == "__main__":
 main()

Here we have an example of the setUp method in action: Here we get the
location of the test suite code (tarball) through
avocado.Test.datadir(), then uncompress the tarball through
avocado.utils.archive.extract(), an API that will
decompress the suite tarball, followed by avocado.utils.build.make(), that will build
the suite.

The setUp method is the only place in avocado where you are allowed to
call the skip method, given that, if a test started to be executed, by
definition it can’t be skipped anymore. Avocado will do its best to enforce
this boundary, so that if you use skip outside setUp, the test upon
execution will be marked with the ERROR status, and the error message
will instruct you to fix your test’s code.

In this example, the test method just gets into the base directory of
the compiled suite and executes the ./synctest command, with appropriate
parameters, using avocado.utils.process.system().

Fetching asset files

To run third party test suites as mentioned above, or for any other purpose,
we offer an asset fetcher as a method of Avocado Test class.
The asset method looks for a list of directories in the cache_dirs key,
inside the [datadir.paths] section from the configuration files. Read-only
directories are also supported. When the asset file is not present in any of
the provided directories, we will try to download the file from the provided
locations, copying it to the first writable cache directory. Example:

cache_dirs = ['/usr/local/src/', '~/avocado/cache']

In the example above, /usr/local/src/ is a read-only directory. In that
case, when we need to fetch the asset from the locations, it will be copied to
the ~/avocado/cache directory.

If you don’t provide a cache_dirs, we will create a cache directory
inside the avocado data_dir location to put the fetched files in.

	Use case 1: no cache_dirs key in config files, only the asset name
provided in the full url format:

...
 def setUp(self):
 stress = 'http://people.seas.harvard.edu/~apw/stress/stress-1.0.4.tar.gz'
 tarball = self.fetch_asset(stress)
 archive.extract(tarball, self.srcdir)
...

In this case, fetch_asset() will download the file from the url provided,
copying it to the $data_dir/cache directory. tarball variable will
contains, for example, /home/user/avocado/data/cache/stress-1.0.4.tar.gz.

	Use case 2: Read-only cache directory provided. cache_dirs = ['/mnt/files']:

...
 def setUp(self):
 stress = 'http://people.seas.harvard.edu/~apw/stress/stress-1.0.4.tar.gz'
 tarball = self.fetch_asset(stress)
 archive.extract(tarball, self.srcdir)
...

In this case, we try to find stress-1.0.4.tar.gz file in /mnt/files
directory. If it’s not there, since /mnt/files is read-only, we will try
to download the asset file to the $data_dir/cache directory.

	Use case 3: Writable cache directory provided, along with a list of
locations. cache_dirs = ['~/avocado/cache']:

...
 def setUp(self):
 st_name = 'stress-1.0.4.tar.gz'
 st_hash = 'e1533bc704928ba6e26a362452e6db8fd58b1f0b'
 st_loc = ['http://people.seas.harvard.edu/~apw/stress/stress-1.0.4.tar.gz',
 'ftp://foo.bar/stress-1.0.4.tar.gz']
 tarball = self.fetch_asset(st_name, asset_hash=st_hash,
 locations=st_loc)
 archive.extract(tarball, self.srcdir)
...

In this case, we try to download stress-1.0.4.tar.gz from the provided
locations list (if it’s not already in ~/avocado/cache). The hash was
also provided, so we will verify the hash. To do so, we first look for a
hashfile named stress-1.0.4.tar.gz.sha1 in the same directory. If the
hashfile is not present we compute the hash and create the hashfile for
further usage.

The resulting tarball variable content will be
~/avocado/cache/stress-1.0.4.tar.gz.
An exception will take place if we fail to download or to verify the file.

Detailing the fetch_asset() attributes:

	name: The name used to name the fetched file. It can also contains a full
URL, that will be used as the first location to try (after serching into the
cache directories).

	asset_hash: (optional) The expected file hash. If missing, we skip the
check. If provided, before computing the hash, we look for a hashfile to
verify the asset. If the hashfile is nor present, we compute the hash and
create the hashfile in the same cache directory for further usage.

	algorithm: (optional) Provided hash algorithm format. Defaults to sha1.

	locations: (optional) List of locations that will be used to try to fetch
the file from. The supported schemes are http://, https://,
ftp:// and file://. You’re required to inform the full url to the
file, including the file name. The first success will skip the next
locations. Notice that for file:// we just create a symbolic link in the
cache directory, pointing to the file original location.

	expire: (optional) time period that the cached file will be considered
valid. After that period, the file will be dowloaded again. The value can
be an integer or a string containig the time and the unit. Example: ‘10d’
(ten days). Valid units are s (second), m (minute), h (hour) and
d (day).

The expected return is the asset file path or an exception.

Test Output Check and Output Record Mode

In a lot of occasions, you want to go simpler: just check if the output of a
given application matches an expected output. In order to help with this common
use case, we offer the option --output-check-record [mode] to the test runner:

--output-check-record OUTPUT_CHECK_RECORD
 Record output streams of your tests to reference files
 (valid options: none (do not record output streams),
 all (record both stdout and stderr), stdout (record
 only stderr), stderr (record only stderr). Default:
 none

If this option is used, it will store the stdout or stderr of the process (or
both, if you specified all) being executed to reference files: stdout.expected
and stderr.expected. Those files will be recorded in the test data dir. The
data dir is in the same directory as the test source file, named
[source_file_name.data]. Let’s take as an example the test synctest.py. In a
fresh checkout of Avocado, you can see:

examples/tests/synctest.py.data/stderr.expected
examples/tests/synctest.py.data/stdout.expected

From those 2 files, only stdout.expected is non empty:

$ cat examples/tests/synctest.py.data/stdout.expected
PAR : waiting
PASS : sync interrupted

The output files were originally obtained using the test runner and passing the
option –output-check-record all to the test runner:

$ scripts/avocado run --output-check-record all synctest.py
JOB ID : bcd05e4fd33e068b159045652da9eb7448802be5
JOB LOG : $HOME/avocado/job-results/job-2014-09-25T20.20-bcd05e4/job.log
TESTS : 1
 (1/1) synctest.py:SyncTest.test: PASS (2.20 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 2.20 s

After the reference files are added, the check process is transparent, in the sense
that you do not need to provide special flags to the test runner.
Now, every time the test is executed, after it is done running, it will check
if the outputs are exactly right before considering the test as PASSed. If you want to override the default
behavior and skip output check entirely, you may provide the flag --output-check=off to the test runner.

The avocado.utils.process APIs have a parameter allow_output_check (defaults to all), so that you
can select which process outputs will go to the reference files, should you chose to record them. You may choose
all, for both stdout and stderr, stdout, for the stdout only, stderr, for only the stderr only, or none,
to allow neither of them to be recorded and checked.

This process works fine also with simple tests, which are programs or shell scripts
that returns 0 (PASSed) or != 0 (FAILed). Let’s consider our bogus example:

$ cat output_record.sh
#!/bin/bash
echo "Hello, world!"

Let’s record the output for this one:

$ scripts/avocado run output_record.sh --output-check-record all
JOB ID : 25c4244dda71d0570b7f849319cd71fe1722be8b
JOB LOG : $HOME/avocado/job-results/job-2014-09-25T20.49-25c4244/job.log
TESTS : 1
 (1/1) output_record.sh: PASS (0.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.01 s

After this is done, you’ll notice that a the test data directory
appeared in the same level of our shell script, containing 2 files:

$ ls output_record.sh.data/
stderr.expected stdout.expected

Let’s look what’s in each of them:

$ cat output_record.sh.data/stdout.expected
Hello, world!
$ cat output_record.sh.data/stderr.expected
$

Now, every time this test runs, it’ll take into account the expected files that
were recorded, no need to do anything else but run the test. Let’s see what
happens if we change the stdout.expected file contents to Hello, Avocado!:

$ scripts/avocado run output_record.sh
JOB ID : f0521e524face93019d7cb99c5765aedd933cb2e
JOB LOG : $HOME/avocado/job-results/job-2014-09-25T20.52-f0521e5/job.log
TESTS : 1
 (1/1) output_record.sh: FAIL (0.02 s)
RESULTS : PASS 0 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.02 s

Verifying the failure reason:

$ cat $HOME/avocado/job-results/job-2014-09-25T20.52-f0521e5/job.log
20:52:38 test L0163 INFO | START 1-output_record.sh
20:52:38 test L0164 DEBUG|
20:52:38 test L0165 DEBUG| Test instance parameters:
20:52:38 test L0173 DEBUG|
20:52:38 test L0176 DEBUG| Default parameters:
20:52:38 test L0180 DEBUG|
20:52:38 test L0181 DEBUG| Test instance params override defaults whenever available
20:52:38 test L0182 DEBUG|
20:52:38 process L0242 INFO | Running '$HOME/Code/avocado/output_record.sh'
20:52:38 process L0310 DEBUG| [stdout] Hello, world!
20:52:38 test L0565 INFO | Command: $HOME/Code/avocado/output_record.sh
20:52:38 test L0565 INFO | Exit status: 0
20:52:38 test L0565 INFO | Duration: 0.00313782691956
20:52:38 test L0565 INFO | Stdout:
20:52:38 test L0565 INFO | Hello, world!
20:52:38 test L0565 INFO |
20:52:38 test L0565 INFO | Stderr:
20:52:38 test L0565 INFO |
20:52:38 test L0060 ERROR|
20:52:38 test L0063 ERROR| Traceback (most recent call last):
20:52:38 test L0063 ERROR| File "$HOME/Code/avocado/avocado/test.py", line 397, in check_reference_stdout
20:52:38 test L0063 ERROR| self.assertEqual(expected, actual, msg)
20:52:38 test L0063 ERROR| File "/usr/lib64/python2.7/unittest/case.py", line 551, in assertEqual
20:52:38 test L0063 ERROR| assertion_func(first, second, msg=msg)
20:52:38 test L0063 ERROR| File "/usr/lib64/python2.7/unittest/case.py", line 544, in _baseAssertEqual
20:52:38 test L0063 ERROR| raise self.failureException(msg)
20:52:38 test L0063 ERROR| AssertionError: Actual test sdtout differs from expected one:
20:52:38 test L0063 ERROR| Actual:
20:52:38 test L0063 ERROR| Hello, world!
20:52:38 test L0063 ERROR|
20:52:38 test L0063 ERROR| Expected:
20:52:38 test L0063 ERROR| Hello, Avocado!
20:52:38 test L0063 ERROR|
20:52:38 test L0064 ERROR|
20:52:38 test L0529 ERROR| FAIL 1-output_record.sh -> AssertionError: Actual test sdtout differs from expected one:
Actual:
Hello, world!

Expected:
Hello, Avocado!

20:52:38 test L0516 INFO |

As expected, the test failed because we changed its expectations.

Test log, stdout and stderr in native Avocado modules

If needed, you can write directly to the expected stdout and stderr files
from the native test scope. It is important to make the distinction between
the following entities:

	The test logs

	The test expected stdout

	The test expected stderr

The first one is used for debugging and informational purposes. Additionally
writing to self.log.warning causes test to be marked as dirty and when
everything else goes well the test ends with WARN. This means that the test
passed but there were non-related unexpected situations described in warning
log.

You may log something into the test logs using the methods in
avocado.Test.log class attributes. Consider the example:

class output_test(Test):

 def test(self):
 self.log.info('This goes to the log and it is only informational')
 self.log.warn('Oh, something unexpected, non-critical happened, '
 'but we can continue.')
 self.log.error('Describe the error here and don't forget to raise '
 'an exception yourself. Writing to self.log.error '
 'won't do that for you.')
 self.log.debug('Everybody look, I had a good lunch today...')

If you need to write directly to the test stdout and stderr streams,
Avocado makes two preconfigured loggers available for that purpose,
named avocado.test.stdout and avocado.test.stderr. You can use
Python’s standard logging API to write to them. Example:

import logging

class output_test(Test):

 def test(self):
 stdout = logging.getLogger('avocado.test.stdout')
 stdout.info('Informational line that will go to stdout')
 ...
 stderr = logging.getLogger('avocado.test.stderr')
 stderr.info('Informational line that will go to stderr')

Avocado will automatically save anything a test generates on STDOUT
into a stdout file, to be found at the test results directory. The same
applies to anything a test generates on STDERR, that is, it will be saved
into a stderr file at the same location.

Additionally, when using the runner’s output recording features,
namely the --output-check-record argument with values stdout,
stderr or all, everything given to those loggers will be saved
to the files stdout.expected and stderr.expected at the test’s
data directory (which is different from the job/test results directory).

Avocado Tests run on a separate process

In order to avoid tests to mess around the environment used by the main
Avocado runner process, tests are run on a forked subprocess. This allows
for more robustness (tests are not easily able to mess/break Avocado) and
some nifty features, such as setting test timeouts.

Setting a Test Timeout

Sometimes your test suite/test might get stuck forever, and this might
impact your test grid. You can account for that possibility and set up a
timeout parameter for your test. The test timeout can be set through
2 means, in the following order of precedence:

	Multiplex variable parameters. You may just set the timeout parameter, like
in the following simplistic example:

sleep_length = 5
sleep_length_type = float
timeout = 3
timeout_type = float

$ avocado run sleeptest.py --mux-yaml /tmp/sleeptest-example.yaml
JOB ID : 6d5a2ff16bb92395100fbc3945b8d253308728c9
JOB LOG : $HOME/avocado/job-results/job-2014-08-12T15.52-6d5a2ff1/job.log
TESTS : 1
 (1/1) sleeptest.py:SleepTest.test: ERROR (2.97 s)
RESULTS : PASS 0 | ERROR 1 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 2.97 s
JOB HTML : $HOME/avocado/job-results/job-2014-08-12T15.52-6d5a2ff1/html/results.html

$ cat $HOME/avocado/job-results/job-2014-08-12T15.52-6d5a2ff1/job.log
15:52:51 test L0143 INFO | START 1-sleeptest.py
15:52:51 test L0144 DEBUG|
15:52:51 test L0145 DEBUG| Test log: $HOME/avocado/job-results/job-2014-08-12T15.52-6d5a2ff1/sleeptest.1/test.log
15:52:51 test L0146 DEBUG| Test instance parameters:
15:52:51 test L0153 DEBUG| _name_map_file = {'sleeptest-example.yaml': 'sleeptest'}
15:52:51 test L0153 DEBUG| _short_name_map_file = {'sleeptest-example.yaml': 'sleeptest'}
15:52:51 test L0153 DEBUG| dep = []
15:52:51 test L0153 DEBUG| id = sleeptest
15:52:51 test L0153 DEBUG| name = sleeptest
15:52:51 test L0153 DEBUG| shortname = sleeptest
15:52:51 test L0153 DEBUG| sleep_length = 5.0
15:52:51 test L0153 DEBUG| sleep_length_type = float
15:52:51 test L0153 DEBUG| timeout = 3.0
15:52:51 test L0153 DEBUG| timeout_type = float
15:52:51 test L0154 DEBUG|
15:52:51 test L0157 DEBUG| Default parameters:
15:52:51 test L0159 DEBUG| sleep_length = 1.0
15:52:51 test L0161 DEBUG|
15:52:51 test L0162 DEBUG| Test instance params override defaults whenever available
15:52:51 test L0163 DEBUG|
15:52:51 test L0169 INFO | Test timeout set. Will wait 3.00 s for PID 15670 to end
15:52:51 test L0170 INFO |
15:52:51 sleeptest L0035 DEBUG| Sleeping for 5.00 seconds
15:52:54 test L0057 ERROR|
15:52:54 test L0060 ERROR| Traceback (most recent call last):
15:52:54 test L0060 ERROR| File "$HOME/Code/avocado/tests/sleeptest.py", line 36, in action
15:52:54 test L0060 ERROR| time.sleep(self.params.sleep_length)
15:52:54 test L0060 ERROR| File "$HOME/Code/avocado/avocado/job.py", line 127, in timeout_handler
15:52:54 test L0060 ERROR| raise exceptions.TestTimeoutError(e_msg)
15:52:54 test L0060 ERROR| TestTimeoutError: Timeout reached waiting for sleeptest to end
15:52:54 test L0061 ERROR|
15:52:54 test L0400 ERROR| ERROR 1-sleeptest.py -> TestTimeoutError: Timeout reached waiting for sleeptest to end
15:52:54 test L0387 INFO |

If you pass that multiplex file to the runner multiplexer, this will register
a timeout of 3 seconds before Avocado ends the test forcefully by sending a
signal.SIGTERM to the test, making it raise a
avocado.core.exceptions.TestTimeoutError.

	Default params attribute. Consider the following example:

import time

from avocado import Test
from avocado import main

class TimeoutTest(Test):

 """
 Functional test for Avocado. Throw a TestTimeoutError.
 """
 default_params = {'timeout': 3.0,
 'sleep_time': 5.0}

 def test(self):
 """
 This should throw a TestTimeoutError.
 """
 self.log.info('Sleeping for %.2f seconds (2 more than the timeout)',
 self.params.sleep_time)
 time.sleep(self.params.sleep_time)

if __name__ == "__main__":
 main()

This accomplishes a similar effect to the multiplex setup defined in there.

$ avocado run timeouttest.py
JOB ID : d78498a54504b481192f2f9bca5ebb9bbb820b8a
JOB LOG : $HOME/avocado/job-results/job-2014-08-12T15.54-d78498a5/job.log
TESTS : 1
 (1/1) timeouttest.py:TimeoutTest.test: INTERRUPTED (3.04 s)
RESULTS : PASS 0 | ERROR 1 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 3.04 s
JOB HTML : $HOME/avocado/job-results/job-2014-08-12T15.54-d78498a5/html/results.html

$ cat $HOME/avocado/job-results/job-2014-08-12T15.54-d78498a5/job.log
15:54:28 test L0143 INFO | START 1-timeouttest.py:TimeoutTest.test
15:54:28 test L0144 DEBUG|
15:54:28 test L0145 DEBUG| Test log: $HOME/avocado/job-results/job-2014-08-12T15.54-d78498a5/timeouttest.1/test.log
15:54:28 test L0146 DEBUG| Test instance parameters:
15:54:28 test L0153 DEBUG| id = timeouttest
15:54:28 test L0154 DEBUG|
15:54:28 test L0157 DEBUG| Default parameters:
15:54:28 test L0159 DEBUG| sleep_time = 5.0
15:54:28 test L0159 DEBUG| timeout = 3.0
15:54:28 test L0161 DEBUG|
15:54:28 test L0162 DEBUG| Test instance params override defaults whenever available
15:54:28 test L0163 DEBUG|
15:54:28 test L0169 INFO | Test timeout set. Will wait 3.00 s for PID 15759 to end
15:54:28 test L0170 INFO |
15:54:28 timeouttes L0036 INFO | Sleeping for 5.00 seconds (2 more than the timeout)
15:54:31 test L0057 ERROR|
15:54:31 test L0060 ERROR| Traceback (most recent call last):
15:54:31 test L0060 ERROR| File "$HOME/Code/avocado/tests/timeouttest.py", line 37, in action
15:54:31 test L0060 ERROR| time.sleep(self.params.sleep_time)
15:54:31 test L0060 ERROR| File "$HOME/Code/avocado/avocado/job.py", line 127, in timeout_handler
15:54:31 test L0060 ERROR| raise exceptions.TestTimeoutError(e_msg)
15:54:31 test L0060 ERROR| TestTimeoutError: Timeout reached waiting for timeouttest to end
15:54:31 test L0061 ERROR|
15:54:31 test L0400 ERROR| ERROR 1-timeouttest.py:TimeoutTest.test -> TestTimeoutError: Timeout reached waiting for timeouttest to end
15:54:31 test L0387 INFO |

Test Tags

The need may arise for more complex tests, that use more advanced Python features
such as inheritance. Due to the fact that Avocado uses a safe test introspection
method, that is more limited than actual loading of the test classes, Avocado
may need your help to identify those tests. For example, let’s say you are
defining a new test class that inherits from the Avocado base test class and
putting it in mylibrary.py:

from avocado import Test

class MyOwnDerivedTest(Test):
 def __init__(self, methodName='test', name=None, params=None,
 base_logdir=None, job=None, runner_queue=None):
 super(MyOwnDerivedTest, self).__init__(methodName, name, params,
 base_logdir, job,
 runner_queue)
 self.log('Derived class example')

Then implement your actual test using that derived class, in mytest.py:

import mylibrary

class MyTest(mylibrary.MyOwnDerivedTest):

 def test1(self):
 self.log('Testing something important')

 def test2(self):
 self.log('Testing something even more important')

If you try to list the tests in that file, this is what you’ll get:

scripts/avocado list mytest.py -V
Type Test
NOT_A_TEST mytest.py

ACCESS_DENIED: 0
BROKEN_SYMLINK: 0
EXTERNAL: 0
FILTERED: 0
INSTRUMENTED: 0
MISSING: 0
NOT_A_TEST: 1
SIMPLE: 0
VT: 0

You need to give avocado a little help by adding a docstring tag. That docstring
tag is :avocado: enable. That tag tells the Avocado safe test detection
code to consider it as an avocado test, regardless of what the (admittedly simple)
detection code thinks of it. Let’s see how that works out. Add the docstring,
as you can see the example below:

import mylibrary

class MyTest(mylibrary.MyOwnDerivedTest):
 """
 :avocado: enable
 """
 def test1(self):
 self.log('Testing something important')

 def test2(self):
 self.log('Testing something even more important')

Now, trying to list the tests on the mytest.py file again:

scripts/avocado list mytest.py -V
Type Test
INSTRUMENTED mytest.py:MyTest.test1
INSTRUMENTED mytest.py:MyTest.test2

ACCESS_DENIED: 0
BROKEN_SYMLINK: 0
EXTERNAL: 0
FILTERED: 0
INSTRUMENTED: 2
MISSING: 0
NOT_A_TEST: 0
SIMPLE: 0
VT: 0

You can also use the :avocado: disable tag, that works the opposite way:
Something looks like an Avocado test, but we force it to not be listed as one.

Python unittest [http://docs.python.org/library/unittest.html#module-unittest] Compatibility Limitations And Caveats

When executing tests, Avocado uses different techniques than most
other Python unittest runners. This brings some compatibility
limitations that Avocado users should be aware.

Execution Model

One of the main differences is a consequence of the Avocado design
decision that tests should be self contained and isolated from other
tests. Additionally, the Avocado test runner runs each test in a
separate process.

If you have a unittest class with many test methods and run them
using most test runners, you’ll find that all test methods run under
the same process. To check that behavior you could add to your
setUp [http://docs.python.org/library/unittest.html#unittest.TestCase.setUp] method:

def setUp(self):
 print("PID: %s", os.getpid())

If you run the same test under Avocado, you’ll find that each test
is run on a separate process.

Class Level setUp [http://docs.python.org/library/unittest.html#unittest.TestCase.setUpClass] and tearDown [http://docs.python.org/library/unittest.html#unittest.TestCase.tearDownClass]

Because of Avocado’s test execution model (each test is run on a
separate process), it doesn’t make sense to support unittest’s
unittest.TestCase.setUpClass() [http://docs.python.org/library/unittest.html#unittest.TestCase.setUpClass] and
unittest.TestCase.tearDownClass() [http://docs.python.org/library/unittest.html#unittest.TestCase.tearDownClass]. Test classes are freshly
instantiated for each test, so it’s pointless to run code in those
methods, since they’re supposed to keep class state between tests.

If you require a common setup to a number of tests, the current
recommended approach is to to write regular setUp [http://docs.python.org/library/unittest.html#unittest.TestCase.setUp] and tearDown [http://docs.python.org/library/unittest.html#unittest.TestCase.tearDown] code that checks if a given state was
already set. One example for such a test that requires a binary
installed by a package:

from avocado import Test

from avocado.utils import software_manager
from avocado.utils import path as utils_path
from avocado.utils import process

class BinSleep(Test):

 """
 Sleeps using the /bin/sleep binary
 """
 def setUp(self):
 self.sleep = None
 try:
 self.sleep = utils_path.find_command('sleep')
 except utils_path.CmdNotFoundError:
 software_manager.install_distro_packages({'fedora': ['coreutils']})
 self.sleep = utils_path.find_command('sleep')

 def test(self):
 process.run("%s 1" % self.sleep)

If your test setup is some kind of action that will last accross
processes, like the installation of a software package given in the
previous example, you’re pretty much covered here.

If you need to keep other type of data a class acrross test
executions, you’ll have to resort to saving and restoring the data
from an outside source (say a “pickle” file). Finding and using a
reliable and safe location for saving such data is currently not in
the Avocado supported use cases.

Environment Variables for Simple Tests

Avocado exports Avocado variables and multiplexed variables as BASH environment
to the running test. Those variables are interesting to simple tests, because
they can not make use of Avocado API directly with Python, like the native
tests can do and also they can modify the test parameters.

Here are the current variables that Avocado exports to the tests:

	Environemnt Variable
	Meaning
	Example

	AVOCADO_VERSION
	Version of Avocado test runner
	0.12.0

	AVOCADO_TEST_BASEDIR
	Base directory of Avocado tests
	$HOME/Downloads/avocado-source/avocado

	AVOCADO_TEST_DATADIR
	Data directory for the test
	$AVOCADO_TEST_BASEDIR/my_test.sh.data

	AVOCADO_TEST_WORKDIR
	Work directory for the test
	/var/tmp/avocado_Bjr_rd/my_test.sh

	AVOCADO_TEST_SRCDIR
	Source directory for the test
	/var/tmp/avocado_Bjr_rd/my-test.sh/src

	AVOCADO_TEST_LOGDIR
	Log directory for the test
	$HOME/logs/job-results/job-2014-09-16T14.38-ac332e6/test-results/$HOME/my_test.sh.1

	AVOCADO_TEST_LOGFILE
	Log file for the test
	$HOME/logs/job-results/job-2014-09-16T14.38-ac332e6/test-results/$HOME/my_test.sh.1/debug.log

	AVOCADO_TEST_OUTPUTDIR
	Output directory for the test
	$HOME/logs/job-results/job-2014-09-16T14.38-ac332e6/test-results/$HOME/my_test.sh.1/data

	AVOCADO_TEST_SYSINFODIR
	The system information directory
	$HOME/logs/job-results/job-2014-09-16T14.38-ac332e6/test-results/$HOME/my_test.sh.1/sysinfo

	
	

	All variables from –mux-yaml
	TIMEOUT=60; IO_WORKERS=10; VM_BYTES=512M; ...

Simple Tests BASH extensions

To enhance simple tests one can use supported set of libraries we created. The
only requirement is to use:

PATH=$(avocado "exec-path"):$PATH

which injects path to Avocado utils into shell PATH. Take a look into
avocado exec-path to see list of available functions and take a look at
examples/tests/simplewarning.sh for inspiration.

Wrap Up

We recommend you take a look at the example tests present in the
examples/tests directory, that contains a few samples to take some
inspiration from. That directory, besides containing examples, is also used by
the Avocado self test suite to do functional testing of Avocado itself.

It is also recommended that you take a look at the API Reference.
for more possibilities.

	[1]	sleeptest is a functional test for Avocado. It’s “old” because we
also have had such a test for Autotest [http://autotest.github.io] for a long time.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Result Formats

A test runner must provide an assortment of ways to clearly communicate results
to interested parties, be them humans or machines.

Results for human beings

Avocado has two different result formats that are intended for human beings:

	Its default UI, which shows the live test execution results on a command
line, text based, UI.

	The HTML report, which is generated after the test job finishes running.

Avocado command line UI

A regular run of Avocado will present the test results in a live fashion,
that is, the job and its test(s) results are constantly updated:

$ avocado run sleeptest.py failtest.py synctest.py
JOB ID : 5ffe479262ea9025f2e4e84c4e92055b5c79bdc9
JOB LOG : $HOME/avocado/job-results/job-2014-08-12T15.57-5ffe4792/job.log
TESTS : 3
 (1/3) sleeptest.py:SleepTest.test: PASS (1.01 s)
 (2/3) failtest.py:FailTest.test: FAIL (0.00 s)
 (3/3) synctest.py:SyncTest.test: PASS (1.98 s)
RESULTS : PASS 1 | ERROR 1 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 3.17 s
JOB HTML : $HOME/avocado/job-results/job-2014-08-12T15.57-5ffe4792/html/results.html

The most important thing is to remember that programs should never need to parse
human output to figure out what happened to a test job run.

HTML report

As can be seen in the previous example, Avocado shows the path to an HTML
report that will be generated as soon as the job finishes running:

$ avocado run sleeptest.py failtest.py synctest.py
...
JOB HTML : $HOME/avocado/job-results/job-2014-08-12T15.57-5ffe4792/html/results.html
...

You can also request that the report be opened automatically by using the
--open-browser option. For example:

$ avocado run sleeptest --open-browser

Will show you the nice looking HTML results report right after sleeptest
finishes running.

Machine readable results

Another type of results are those intended to be parsed by other
applications. Several standards exist in the test community, and Avocado can
in theory support pretty much every result standard out there.

Out of the box, Avocado supports a couple of machine readable results. They
are always generated and stored in the results directory in results.$type
files, but you can ask for a different location too.

xunit

The default machine readable output in Avocado is
xunit [http://help.catchsoftware.com/display/ET/JUnit+Format].

xunit is an XML format that contains test results in a structured form, and
are used by other test automation projects, such as jenkins [http://jenkins-ci.org/]. If you want to make Avocado to generate xunit
output in the standard output of the runner, simply use:

$ avocado run sleeptest.py failtest.py synctest.py --xunit -
<?xml version="1.0" encoding="UTF-8"?>
<testsuite name="avocado" tests="3" errors="0" failures="1" skipped="0" time="3.5769162178" timestamp="2016-05-04 14:46:52.803365">
 <testcase classname="SleepTest" name="1-sleeptest.py:SleepTest.test" time="1.00204920769"/>
 <testcase classname="FailTest" name="2-failtest.py:FailTest.test" time="0.00120401382446">
 <failure type="TestFail" message="This test is supposed to fail"><![CDATA[Traceback (most recent call last):
 File "/home/medic/Work/Projekty/avocado/avocado/avocado/core/test.py", line 490, in _run_avocado
 raise test_exception
TestFail: This test is supposed to fail
]]></failure>
 <system-out><![CDATA[14:46:53 ERROR|
14:46:53 ERROR| Reproduced traceback from: /home/medic/Work/Projekty/avocado/avocado/avocado/core/test.py:435
14:46:53 ERROR| Traceback (most recent call last):
14:46:53 ERROR| File "/home/medic/Work/Projekty/avocado/avocado/examples/tests/failtest.py", line 17, in test
14:46:53 ERROR| self.fail('This test is supposed to fail')
14:46:53 ERROR| File "/home/medic/Work/Projekty/avocado/avocado/avocado/core/test.py", line 585, in fail
14:46:53 ERROR| raise exceptions.TestFail(message)
14:46:53 ERROR| TestFail: This test is supposed to fail
14:46:53 ERROR|
14:46:53 ERROR| FAIL 2-failtest.py:FailTest.test -> TestFail: This test is supposed to fail
14:46:53 INFO |
]]></system-out>
 </testcase>
 <testcase classname="SyncTest" name="3-synctest.py:SyncTest.test" time="2.57366299629"/>
</testsuite>

Note

The dash - in the option –xunit, it means that the xunit result
should go to the standard output.

json

JSON [http://www.json.org/] is a widely used data exchange format. The
json Avocado plugin outputs job information, similarly to the xunit output
plugin:

$ avocado run sleeptest.py failtest.py synctest.py --json -
{
 "debuglog": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/job.log",
 "errors": 0,
 "failures": 1,
 "job_id": "10715c4645d2d2b57889d7a4317fcd01451b600e",
 "pass": 2,
 "skip": 0,
 "tests": [
 {
 "end": 1470761623.176954,
 "fail_reason": "None",
 "logdir": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/test-results/1-sleeptest.py:SleepTest.test",
 "logfile": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/test-results/1-sleeptest.py:SleepTest.test/debug.log",
 "start": 1470761622.174918,
 "status": "PASS",
 "test": "1-sleeptest.py:SleepTest.test",
 "time": 1.0020360946655273,
 "url": "1-sleeptest.py:SleepTest.test",
 "whiteboard": ""
 },
 {
 "end": 1470761623.193472,
 "fail_reason": "This test is supposed to fail",
 "logdir": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/test-results/2-failtest.py:FailTest.test",
 "logfile": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/test-results/2-failtest.py:FailTest.test/debug.log",
 "start": 1470761623.192334,
 "status": "FAIL",
 "test": "2-failtest.py:FailTest.test",
 "time": 0.0011379718780517578,
 "url": "2-failtest.py:FailTest.test",
 "whiteboard": ""
 },
 {
 "end": 1470761625.656061,
 "fail_reason": "None",
 "logdir": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/test-results/3-synctest.py:SyncTest.test",
 "logfile": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/test-results/3-synctest.py:SyncTest.test/debug.log",
 "start": 1470761623.208165,
 "status": "PASS",
 "test": "3-synctest.py:SyncTest.test",
 "time": 2.4478960037231445,
 "url": "3-synctest.py:SyncTest.test",
 "whiteboard": ""
 }
],
 "time": 3.4510700702667236,
 "total": 3
}

Note

The dash - in the option –json, it means that the xunit result
should go to the standard output.

Bear in mind that there’s no documented standard for the Avocado JSON result
format. This means that it will probably grow organically to accommodate
newer Avocado features. A reasonable effort will be made to not break
backwards compatibility with applications that parse the current form of its
JSON result.

TAP

Provides the basic TAP [http://testanything.org/] (Test Anything Protocol) results, currently in v12. Unlike most existing avocado machine readable outputs this one is streamlined (per test results):

$ avocado run sleeptest.py --tap -
1..1
debug.log of sleeptest.py:SleepTest.test:
12:04:38 DEBUG| PARAMS (key=sleep_length, path=*, default=1) => 1
12:04:38 DEBUG| Sleeping for 1.00 seconds
12:04:39 INFO | PASS 1-sleeptest.py:SleepTest.test
12:04:39 INFO |
ok 1 sleeptest.py:SleepTest.test

Silent result

While not a very fancy result format, an application may want nothing but
the exit status code from an Avocado test job run. Example:

$ avocado --silent run failtest.py
$ echo $?
1

In practice, this would usually be used by scripts that will in turn run
Avocado and check its results:

#!/bin/bash
...
$ avocado --silent run /path/to/my/test.py
if [$? == 0]; then
 echo "great success!"
elif
 ...

more details regarding exit codes in Exit Codes section.

Multiple results at once

You can have multiple results formats at once, as long as only one of them
uses the standard output. For example, it is fine to use the xunit result on
stdout and the JSON result to output to a file:

$ avocado run sleeptest.py synctest.py --xunit - --json /tmp/result.json
<?xml version="1.0" encoding="UTF-8"?>
<testsuite name="avocado" tests="2" errors="0" failures="0" skipped="0" time="3.64848303795" timestamp="2016-05-04 17:26:05.645665">
 <testcase classname="SleepTest" name="1-sleeptest.py:SleepTest.test" time="1.00270605087"/>
 <testcase classname="SyncTest" name="2-synctest.py:SyncTest.test" time="2.64577698708"/>
</testsuite>

$ cat /tmp/result.json
{
 "debuglog": "/home/cleber/avocado/job-results/job-2016-08-09T13.55-1a94ad6/job.log",
 "errors": 0,
 ...
}

But you won’t be able to do the same without the –json flag passed to
the program:

$ avocado run sleeptest.py synctest.py --xunit - --json -
Options --json --xunit are trying to use stdout simultaneously
Please set at least one of them to a file to avoid conflicts

That’s basically the only rule, and a sane one, that you need to follow.

Exit Codes

Avocado exit code tries to represent different things that can happen during
an execution. That means exit codes can be a combination of codes that were
ORed toghether as a simgle exit code. The final exit code can be debundled so
users can have a good idea on what happened to the job.

The single individual exit codes are:

	AVOCADO_ALL_OK (0)

	AVOCADO_TESTS_FAIL (1)

	AVOCADO_JOB_FAIL (2)

	AVOCADO_FAIL (4)

	AVOCADO_JOB_INTERRUPTED (8)

If a job finishes with exit code 9, for example, it means we had at least
one test that failed and also we had at some point a job interruption, probably
due to the job timeout or a CTRL+C.

Implementing other result formats

If you are looking to implement a new machine or human readable output
format, you can refer to avocado.core.plugins.xunit and use it as a
starting point.

If your result is something that is produced at once, based on the
complete job outcome, you should create a new class that inherits from
avocado.core.plugin_interfaces.Result and implements the
avocado.core.plugin_interfaces.Result.render() method.

But, if your result implementation is something that outputs
information live before/after each test, have to implement the
old-style interface. Create a class that inherits from
avocado.core.result.Result and implements all public methods,
that perform actions (write to a file/stream) for each test states.

You can take a look at Plugin System for more information on how to
write a plugin that will activate and execute the new result format.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Configuration

Avocado utilities have a certain default behavior based on educated, reasonable (we hope) guesses about how
users like to use their systems. Of course, different people will have different needs and/or dislike our defaults,
and that’s why a configuration system is in place to help with those cases

The Avocado config file format is based on the (informal)
INI file ‘specification’ [http://en.wikipedia.org/wiki/INI_file], that is implemented by
Python’s ConfigParser [http://docs.python.org/library/configparser.html#module-ConfigParser]. The format is simple and straightforward, composed by sections,
that contain a number of keys and values. Take for example a basic Avocado config file:

[datadir.paths]
base_dir = ~/avocado
test_dir = /$HOME/Code/avocado/examples/tests
data_dir = /usr/share/avocado/data
logs_dir = ~/avocado/job-results

The datadir.paths section contains a number of keys, all of them related to directories used by
the test runner. The base_dir is the base directory to other important Avocado directories, such
as log, data and test directories. You can also choose to set those other important directories by
means of the variables test_dir, data_dir and logs_dir. You can do this by simply editing
the config files available.

Config file parsing order

Avocado starts by parsing what it calls system wide config file, that is shipped to all Avocado users on a system
wide directory, /etc/avocado/avocado.conf. Then it’ll verify if there’s a local user config file, that is located
usually in ~/.config/avocado/avocado.conf. The order of the parsing matters, so the system wide file is parsed,
then the user config file is parsed last, so that the user can override values at will. There is another directory
that will be scanned by extra config files, /etc/avocado/conf.d. This directory may contain plugin config files,
and extra additional config files that the system administrator/avocado developers might judge necessary to put there.

Please note that for base directories, if you chose a directory that can’t be properly used by Avocado (some directories
require read access, others, read and write access), Avocado will fall back to some defaults. So if your regular user
wants to write logs to /root/avocado/logs, Avocado will not use that directory, since it can’t write files to that
place. A new location, by default ~/avocado/job-results will be selected instead.

The order of files described in this section is only valid if avocado was installed in the system. For people using
avocado from git repos (usually avocado developers), that did not install it in the system, keep in mind that avocado
will read the config files present in the git repos, and will ignore the system wide config files. Running
avocado config will let you know which files are actually being used.

Plugin config files

Plugins can also be configured by config files. In order to not disturb the main Avocado config file, those plugins,
if they wish so, may install additional config files to /etc/avocado/conf.d/[pluginname].conf, that will be parsed
after the system wide config file. Users can override those values as well at the local config file level.
Considering the config for the hypothethical plugin salad:

[salad.core]
base = ceasar
dressing = ceasar

If you want, you may change dressing in your config file by simply adding a [salad.core] new section in your
local config file, and set a different value for dressing there.

Parsing order recap

So the file parsing order is:

	/etc/avocado/avocado.conf

	/etc/avocado/conf.d/*.conf

	~/.config/avocado/avocado.conf

In this order, meaning that what you set on your local config file may override what’s defined in the system wide files.

Note

Please note that if avocado is running from git repos, those files will be ignored in favor of in tree configuration files. This is something that would normally only affect people developing avocado, and if you are in doubt, avocado config will tell you exactly which files are being used in any given situation.

Order of precedence for values used in tests

Since you can use the config system to alter behavior and values used in tests (think paths to test programs, for
example), we established the following order of precedence for variables (from least precedence to most):

	default value (from library or test code)

	global config file

	local (user) config file

	command line switch

	multiplexer

So the least important value comes from the library or test code default, going all the way up to the multiplexing
system.

Config plugin

A configuration plugin is provided for users that wish to quickly see what’s defined in all sections of their Avocado
configuration, after all the files are parsed in their correct resolution order. Example:

$ avocado config
Config files read (in order):
 /etc/avocado/avocado.conf
 $HOME/.config/avocado/avocado.conf

 Section.Key Value
 runner.base_dir /usr/share/avocado
 runner.test_dir $HOME/Code/avocado/examples/tests
 runner.data_dir /usr/share/avocado/data
 runner.logs_dir ~/avocado/job-results

The command also shows the order in which your config files were parsed, giving you a better understanding of
what’s going on. The Section.Key nomenclature was inspired in git config --list output.

Avocado Data Directories

When running tests, we are frequently looking to:

	Locate tests

	Write logs to a given location

	Grab files that will be useful for tests, such as ISO files or VM disk
images

Avocado has a module dedicated to find those paths, to avoid cumbersome
path manipulation magic that people had to do in previous test frameworks [1].

If you want to list all relevant directories for your test, you can use
avocado config –datadir command to list those directories. Executing
it will give you an output similar to the one seen below:

$ avocado config --datadir
Config files read (in order):
 /etc/avocado/avocado.conf
 $HOME/.config/avocado/avocado.conf

Avocado replaces config dirs that can't be accessed
with sensible defaults. Please edit your local config
file to customize values

Avocado Data Directories:
 base $HOME/avocado
 tests $HOME/Code/avocado/examples/tests
 data $HOME/avocado/data
 logs $HOME/avocado/job-results

Note that, while Avocado will do its best to use the config values you
provide in the config file, if it can’t write values to the locations
provided, it will fall back to (we hope) reasonable defaults, and we
notify the user about that in the output of the command.

The relevant API documentation and meaning of each of those data directories
is in avocado.data_dir, so it’s highly recommended you take a look.

You may set your preferred data dirs by setting them in the Avocado config files.
The only exception for important data dirs here is the Avocado tmp dir, used to
place temporary files used by tests. That directory will be in normal circumstances
/var/tmp/avocado_XXXXX, (where XXXXX is in actuality a random string) securely
created on /var/tmp/, unless the user has the $TMPDIR environment variable set,
since that is customary among unix programs.

The next section of the documentation explains how you can see and set config
values that modify the behavior for the Avocado utilities and plugins.

[1] For example, autotest.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Test discovery

In this section you can learn how tests are being discovered and how to affect
this process.

The order of test loaders

Avocado supports different types of test starting with SIMPLE tests, which
are simply executable files, then unittest-like tests called INSTRUMENTED
up to some tests like the avocado-vt ones, which uses complex
matrix of tests from config files that don’t directly map to existing files.
Given the number of loaders, the mapping from test names on the command line
to executed tests might not always be unique. Additionally some people might
always (or for given run) want to execute only tests of a single type.

To adjust this behavior you can either tweak plugins.loaders in avocado
settings (/etc/avocado/), or temporarily using --loaders
(option of avocado run) option.

This option allows you to specify order and some params of the available test
loaders. You can specify either loader_name (file), loader_name +
TEST_TYPE (file.SIMPLE) and for some loaders even additional params
passed after : (external:/bin/echo -e. You can also supply
@DEFAULT, which injects into that position all the remaining unused
loaders.

To get help about --loaders:

$ avocado run --loaders ?
$ avocado run --loaders external:?

Example of how --loaders affects the produced tests (manually gathered
as some of them result in error):

$ avocado run passtest.py boot this_does_not_exist /bin/echo
 > INSTRUMENTED passtest.py:PassTest.test
 > VT io-github-autotest-qemu.boot
 > MISSING this_does_not_exist
 > SIMPLE /bin/echo
$ avocado run passtest.py boot this_does_not_exist /bin/echo --loaders @DEFAULT "external:/bin/echo -e"
 > INSTRUMENTED passtest.py:PassTest.test
 > VT io-github-autotest-qemu.boot
 > EXTERNAL this_does_not_exist
 > SIMPLE /bin/echo
$ avocado run passtest.py boot this_does_not_exist /bin/echo --loaders file.SIMPLE file.INSTRUMENTED @DEFAULT external.EXTERNAL:/bin/echo
 > INSTRUMENTED passtest.py:PassTest.test
 > VT io-github-autotest-qemu.boot
 > EXTERNAL this_does_not_exist
 > SIMPLE /bin/echo

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Logging system

This section describes the logging system used in avocado and avocado tests.

Tweaking the UI

Avocado uses python’s logging system to produce UI and to store test’s output. The system is quite flexible and allows you to tweak the output to your needs either by built-in stream sets, or directly by using the stream name. To tweak them you can use avocado –show STREAM[:LEVEL][,STREAM[:LEVEL],...]. Built-in streams with description (followed by list of associated python streams):

	app:	The text based UI (avocado.app)

	test:	Output of the executed tests (avocado.test, “”)

	debug:	Additional messages useful to debug avocado (avocado.app.debug)

	remote:	Fabric/paramiko debug messages, useful to analyze remote execution (avocado.fabric, paramiko)

	early:	Early logging before the logging system is set. It includes the test output and lots of output produced by used libraries. (“”, avocado.test)

Additionally you can specify “all” or “none” to enable/disable all of pre-defined streams and you can also supply custom python logging streams and they will be passed to the standard output.

Warning

Messages with importance greater or equal WARN in logging stream “avocado.app” are always enabled and they go to the standard error.

Storing custom logs

When you run a test, you can also store custom logging streams into the results directory by avocado run –store-logging-stream [STREAM[:LEVEL] [STREAM[:LEVEL] ...]], which will produce $STREAM.$LEVEL files per each (unique) entry in the test results directory.

Note

You have to specify separated logging streams. You can’t use the built-in streams in this function.

Note

Currently the custom streams are stored only per job, not per each individual test.

Paginator

Some subcommands (list, plugins, ...) support “paginator”, which, on compatible terminals, basically pipes the colored output to less to simplify browsing of the produced output. One can disable it by –paginator {on|off}.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Test variants - Mux

The Mux is a special mechanism to produce multiple variants of the same
test with different parameters. This is essential in order to get a decent
coverage and avocado allows several ways to define those parameters from
simple enumeration of key/value pairs to complex trees which allows in simple
manner define test matrices with all possible variants.

This sounds similar to sparse matrix jobs in Jenkins, but the difference is
that instead of filters, which are available too, avocado allows specifying
so called mux domains, which is a nicer way to represent data.
As the data is represented in trees it creates all possible variants
per domain and then all combinations of these. It sounds complicated, but
in reality it follows the way people are used to define dependencies,
therefor it’s very simple to use and clear even in complex cases.

The best explanation comes usually from examples, so feel free to scroll down
to yaml_to_mux plugin section, which uses the default mux plugin to feed
the Mux.

Mux internals

The Mux is a core part of avocado and one can see it as a multiplexed
database, which contains key/value pairs associated to given paths and
as we are talking about a tree of those, we call the paths Nodes.

Mux allows iterating through all possible combinations which are stored in
the database, which is called multiplexation. Mux yields variants,
which are lists of leaf nodes with their values, which are then processed
into AvocadoParams. Those params are available in tests as
self.params and one can query for the current parameters:

self.params.get(key="my_key", path="/some/location/*",
 default="default_value")

Let’s get back to Mux for a while. As mentioned earlier, it’s a database
which allows storing multiple variants of test parameters. To fill the
database, you can use several commands.

	--mux-inject - injects directly [path:]key:node values from the
cmdline (see avocado multiplex -h)

	yaml_to_mux plugin - allows parsing yaml files into the Mux
database (see yaml_to_mux plugin)

	Custom plugin using the simple Mux API (see mux_api)

Mux API

Warning

This API is internal, we might change it at any moment. On the
other hand we maintain avocado-virt plugin which uses this
API so in such case we’d provide a patch there demonstrating
the necessary changes.

The Mux object is defined in avocado/core/multiplexer.py, is always
instantiated in avocado.core.parser.py and always available in
args.mux. The basic workflow is:

	Initialize Mux in args.mux

	Fill it with data (plugins or job)

	Multiplex it (in job)

	Iterate through all variants on all job’s tests

Once the Mux object is multiplexed (3), it’s restricted to alter the
data (2) to avoid changing the already produced data.

The main API needed for your plugins, which we are going to try keeping as
stable as possible is:

	mux.is_parsed() - to find out whether the object was already parsed

	data_inject(key, value, path=None) - to inject key/value pairs optionaly
to a given path (by default ‘/’)

	data_merge(tree) - to merge avocado.core.tree.TreeNode-like tree
into the database.

Given these you should be able to implement any kind of parser or params
feeder, should you require one. We favor yaml and therefor we implemented
a yaml_to_mux plugin which can be found in
avocado/plugins/yaml_to_mux.py and on it we also describe the way
Mux works: yaml_to_mux plugin

Yaml_to_mux plugin

In order to get a good coverage one always needs to execute the same test
with different parameters or in various environments. Avocado uses the
term Multiplexation or Mux to generate multiple variants of the same
test with different values. To define these variants and values
YAML [http://www.yaml.org/] files are used. The benefit of using YAML
file is the visible separation of different scopes. Even very advanced setups
are still human readable, unlike traditional sparse, multi-dimensional-matrices
of parameters.

Let’s start with an example (line numbers at the first columns are for
documentation purposes only, they are not part of the multiplex file
format):

 1 hw:
 2 cpu: !mux
 3 intel:
 4 cpu_CFLAGS: '-march=core2'
 5 amd:
 6 cpu_CFLAGS: '-march=athlon64'
 7 arm:
 8 cpu_CFLAGS: '-mabi=apcs-gnu -march=armv8-a -mtune=arm8'
 9 disk: !mux
10 scsi:
11 disk_type: 'scsi'
12 virtio:
13 disk_type: 'virtio'
14 distro: !mux
15 fedora:
16 init: 'systemd'
17 mint:
18 init: 'systemv'
19 env: !mux
20 debug:
21 opt_CFLAGS: '-O0 -g'
22 prod:
23 opt_CFLAGS: '-O2'

There are couple of key=>value pairs (lines 4,6,8,11,13,...) and there are
named nodes which define scope (lines 1,2,3,5,7,9,...). There are also additional
flags (lines 2, 9, 14, 19) which modifies the behavior.

Nodes

They define context of the key=>value pairs allowing us to easily identify
for what this values might be used for and also it makes possible to define
multiple values of the same keys with different scope.

Due to their purpose the YAML automatic type conversion for nodes names
is disabled, so the value of node name is always as written in the yaml
file (unlike values, where yes converts to True and such).

Nodes are organized in parent-child relationship and together they create
a tree. To view this structure use avocado multiplex --tree -m <file>:

┗━━ run
 ┣━━ hw
 ┃ ┣━━ cpu
 ┃ ┃ ╠══ intel
 ┃ ┃ ╠══ amd
 ┃ ┃ ╚══ arm
 ┃ ┗━━ disk
 ┃ ╠══ scsi
 ┃ ╚══ virtio
 ┣━━ distro
 ┃ ╠══ fedora
 ┃ ╚══ mint
 ┗━━ env
 ╠══ debug
 ╚══ prod

You can see that hw has 2 children cpu and disk. All parameters
defined in parent node are inherited to children and extended/overwritten by
their values up to the leaf nodes. The leaf nodes (intel, amd, arm,
scsi, ...) are the most important as after multiplexation they form the
parameters available in tests.

Keys and Values

Every value other than dict (4,6,8,11) is used as value of the antecedent
node.

Each node can define key/value pairs (lines 4,6,8,11,...). Additionally
each children node inherits values of it’s parent and the result is called
node environment.

Given the node structure bellow:

devtools:
 compiler: 'cc'
 flags:
 - '-O2'
 debug: '-g'
 fedora:
 compiler: 'gcc'
 flags:
 - '-Wall'
 osx:
 compiler: 'clang'
 flags:
 - '-arch i386'
 - '-arch x86_64'

And the rules defined as:

	Scalar values (Booleans, Numbers and Strings) are overwritten by walking from the root until the final node.

	Lists are appended (to the tail) whenever we walk from the root to the final node.

The environment created for the nodes fedora and osx are:

	Node //devtools/fedora environment compiler: 'gcc', flags: ['-O2', '-Wall']

	Node //devtools/osx environment compiler: 'clang', flags: ['-O2', '-arch i386', '-arch x86_64']

Note that due to different usage of key and values in environment we disabled
the automatic value conversion for keys while keeping it enabled for values.
This means that the value can be of any YAML supported value, eg. bool, None,
list or custom type, while the key is always string.

Variants

In the end all leaves are gathered and turned into parameters, more specifically into
AvocadoParams:

setup:
 graphic:
 user: "guest"
 password: "pass"
 text:
 user: "root"
 password: "123456"

produces [graphic, text]. In the test code you’ll be able to query only
those leaves. Intermediary or root nodes are available.

The example above generates a single test execution with parameters separated
by path. But the most powerful multiplexer feature is that it can generate
multiple variants. To do that you need to tag a node whose children are
ment to be multiplexed. Effectively it returns only leaves of one child at the
time.In order to generate all possible variants multiplexer creates cartesian
product of all of these variants:

cpu: !mux
 intel:
 amd:
 arm:
fmt: !mux
 qcow2:
 raw:

Produces 6 variants:

/cpu/intel, /fmt/qcow2
/cpu/intel, /fmt/raw
...
/cpu/arm, /fmt/raw

The !mux evaluation is recursive so one variant can expand to multiple
ones:

fmt: !mux
 qcow: !mux
 2:
 2v3:
 raw:

Results in:

/fmt/qcow2/2
/fmt/qcow2/2v3
/raw

Resolution order

You can see that only leaves are part of the test parameters. It might happen
that some of these leaves contain different values of the same key. Then
you need to make sure your queries separate them by different paths. When
the path matches multiple results with different origin, an exception is raised
as it’s impossible to guess which key was originally intended.

To avoid these problems it’s recommended to use unique names in test parameters if
possible, to avoid the mentioned clashes. It also makes it easier to extend or mix
multiple YAML files for a test.

For multiplex YAML files that are part of a framework, contain default
configurations, or serve as plugin configurations and other advanced setups it is
possible and commonly desirable to use non-unique names. But always keep those points
in mind and provide sensible paths.

Multiplexer also supports default paths. By default it’s /run/* but it can
be overridden by --mux-path, which accepts multiple arguments. What it does
it splits leaves by the provided paths. Each query goes one by one through
those sub-trees and first one to hit the match returns the result. It might not
solve all problems, but it can help to combine existing YAML files with your
ones:

qa: # large and complex read-only file, content injected into /qa
 tests:
 timeout: 10
 ...
my_variants: !mux # your YAML file injected into /my_variants
 short:
 timeout: 1
 long:
 timeout: 1000

You want to use an existing test which uses params.get('timeout', '*'). Then you
can use --mux-path '/my_variants/*' '/qa/*' and it’ll first look in your
variants. If no matches are found, then it would proceed to /qa/*

Keep in mind that only slices defined in mux-path are taken into account for
relative paths (the ones starting with *)

Injecting files

You can run any test with any YAML file by:

avocado run sleeptest.py --mux-yaml file.yaml

This puts the content of file.yaml into /run
location, which as mentioned in previous section, is the default mux-path
path. For most simple cases this is the expected behavior as your files
are available in the default path and you can safely use params.get(key).

When you need to put a file into a different location, for example
when you have two files and you don’t want the content to be merged into
a single place becomming effectively a single blob, you can do that by
giving a name to your yaml file:

avocado run sleeptest.py --mux-yaml duration:duration.yaml

The content of duration.yaml is injected into /run/duration. Still when
keys from other files don’t clash, you can use params.get(key) and retrieve
from this location as it’s in the default path, only extended by the
duration intermediary node. Another benefit is you can merge or separate
multiple files by using the same or different name, or even a complex
(relative) path.

Last but not least, advanced users can inject the file into whatever location
they prefer by:

avocado run sleeptest.py --mux-yaml /my/variants/duration:duration.yaml

Simple params.get(key) won’t look in this location, which might be the
intention of the test writer. There are several ways to access the values:

	absolute location params.get(key, '/my/variants/duration')

	absolute location with wildcards params.get(key, '/my/*)
(or /*/duration/*...)

	set the mux-path avocado run ... --mux-path /my/* and use relative path

It’s recommended to use the simple injection for single YAML files, relative
injection for multiple simple YAML files and the last option is for very
advanced setups when you either can’t modify the YAML files and you need to
specify custom resoltion order or you are specifying non-test parameters, for
example parameters for your plugin, which you need to separate from the test
parameters.

Multiple files

You can provide multiple files. In such scenario final tree is a combination
of the provided files where later nodes with the same name override values of
the preceding corresponding node. New nodes are appended as new children:

file-1.yaml:
 debug:
 CFLAGS: '-O0 -g'
 prod:
 CFLAGS: '-O2'

file-2.yaml:
 prod:
 CFLAGS: '-Os'
 fast:
 CFLAGS: '-Ofast'

results in:

debug:
 CFLAGS: '-O0 -g'
prod:
 CFLAGS: '-Os' # overriden
fast:
 CFLAGS: '-Ofast' # appended

It’s also possible to include existing file into another a given node in another
file. This is done by the !include : $path directive:

os:
 fedora:
 !include : fedora.yaml
 gentoo:
 !include : gentoo.yaml

Warning

Due to YAML nature, it’s mandatory to put space between
!include and the colon (:) that must follow it.

The file location can be either absolute path or relative path to the YAML
file where the !include is called (even when it’s nested).

Whole file is merged into the node where it’s defined.

Advanced YAML tags

There are additional features related to YAML files. Most of them require values
separated by ":". Again, in all such cases it’s mandatory to add a white space
(" ") between the tag and the ":", otherwise ":" is part of the tag
name and the parsing fails.

!include

Includes other file and injects it into the node it’s specified in:

my_other_file:
 !include : other.yaml

The content of /my_other_file would be parsed from the other.yaml. It’s
the hardcoded equivalent of the -m $using:$path.

Relative paths start from the original file’s directory.

!using

Prepends path to the node it’s defined in:

!using : /foo
bar:
 !using : baz

bar is put into baz becoming /baz/bar and everything is put into
/foo. So the final path of bar is /foo/baz/bar.

!remove_node

Removes node if it existed during the merge. It can be used to extend
incompatible YAML files:

os:
 fedora:
 windows:
 3.11:
 95:
os:
 !remove_node : windows
 windows:
 win3.11:
 win95:

Removes the windows node from structure. It’s different from filter-out
as it really removes the node (and all children) from the tree and
it can be replaced by you new structure as shown in the example. It removes
windows with all children and then replaces this structure with slightly
modified version.

As !remove_node is processed during merge, when you reverse the order,
windows is not removed and you end-up with /windows/{win3.11,win95,3.11,95}
nodes.

!remove_value

It’s similar to !remove_node only with values.

!mux

Children of this node will be multiplexed. This means that in first variant
it’ll return leaves of the first child, in second the leaves of the second
child, etc. Example is in section Variants

Complete example

Let’s take a second look at the first example:

 1 hw:
 2 cpu: !mux
 3 intel:
 4 cpu_CFLAGS: '-march=core2'
 5 amd:
 6 cpu_CFLAGS: '-march=athlon64'
 7 arm:
 8 cpu_CFLAGS: '-mabi=apcs-gnu -march=armv8-a -mtune=arm8'
 9 disk: !mux
10 scsi:
11 disk_type: 'scsi'
12 virtio:
13 disk_type: 'virtio'
14 distro: !mux
15 fedora:
16 init: 'systemd'
17 mint:
18 init: 'systemv'
19 env: !mux
20 debug:
21 opt_CFLAGS: '-O0 -g'
22 prod:
23 opt_CFLAGS: '-O2'

After filters are applied (simply removes non-matching variants), leaves
are gathered and all variants are generated:

$ avocado multiplex -m examples/mux-environment.yaml
Variants generated:
Variant 1: /hw/cpu/intel, /hw/disk/scsi, /distro/fedora, /env/debug
Variant 2: /hw/cpu/intel, /hw/disk/scsi, /distro/fedora, /env/prod
Variant 3: /hw/cpu/intel, /hw/disk/scsi, /distro/mint, /env/debug
Variant 4: /hw/cpu/intel, /hw/disk/scsi, /distro/mint, /env/prod
Variant 5: /hw/cpu/intel, /hw/disk/virtio, /distro/fedora, /env/debug
Variant 6: /hw/cpu/intel, /hw/disk/virtio, /distro/fedora, /env/prod
Variant 7: /hw/cpu/intel, /hw/disk/virtio, /distro/mint, /env/debug
Variant 8: /hw/cpu/intel, /hw/disk/virtio, /distro/mint, /env/prod
Variant 9: /hw/cpu/amd, /hw/disk/scsi, /distro/fedora, /env/debug
Variant 10: /hw/cpu/amd, /hw/disk/scsi, /distro/fedora, /env/prod
Variant 11: /hw/cpu/amd, /hw/disk/scsi, /distro/mint, /env/debug
Variant 12: /hw/cpu/amd, /hw/disk/scsi, /distro/mint, /env/prod
Variant 13: /hw/cpu/amd, /hw/disk/virtio, /distro/fedora, /env/debug
Variant 14: /hw/cpu/amd, /hw/disk/virtio, /distro/fedora, /env/prod
Variant 15: /hw/cpu/amd, /hw/disk/virtio, /distro/mint, /env/debug
Variant 16: /hw/cpu/amd, /hw/disk/virtio, /distro/mint, /env/prod
Variant 17: /hw/cpu/arm, /hw/disk/scsi, /distro/fedora, /env/debug
Variant 18: /hw/cpu/arm, /hw/disk/scsi, /distro/fedora, /env/prod
Variant 19: /hw/cpu/arm, /hw/disk/scsi, /distro/mint, /env/debug
Variant 20: /hw/cpu/arm, /hw/disk/scsi, /distro/mint, /env/prod
Variant 21: /hw/cpu/arm, /hw/disk/virtio, /distro/fedora, /env/debug
Variant 22: /hw/cpu/arm, /hw/disk/virtio, /distro/fedora, /env/prod
Variant 23: /hw/cpu/arm, /hw/disk/virtio, /distro/mint, /env/debug
Variant 24: /hw/cpu/arm, /hw/disk/virtio, /distro/mint, /env/prod

Where the first variant contains:

/hw/cpu/intel/ => cpu_CFLAGS: -march=core2
/hw/disk/ => disk_type: scsi
/distro/fedora/ => init: systemd
/env/debug/ => opt_CFLAGS: -O0 -g

The second one:

/hw/cpu/intel/ => cpu_CFLAGS: -march=core2
/hw/disk/ => disk_type: scsi
/distro/fedora/ => init: systemd
/env/prod/ => opt_CFLAGS: -O2

From this example you can see that querying for /env/debug works only in
the first variant, but returns nothing in the second variant. Keep this in mind
and when you use the !mux flag always query for the pre-mux path,
/env/* in this example.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Job Replay

In order to reproduce a given job using the same data, one can use the
--replay option for the run command, informing the hash id from
the original job to be replayed. The hash id can be partial, as long as
the provided part corresponds to the initial characters of the original
job id and it is also unique enough. Or, instead of the job id, you can
use the string latest and avocado will replay the latest job executed.

Let’s see an example. First, running a simple job with two urls:

$ avocado run /bin/true /bin/false
JOB ID : 825b860b0c2f6ec48953c638432e3e323f8d7cad
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T16.14-825b860/job.log
TESTS : 2
 (1/2) /bin/true: PASS (0.01 s)
 (2/2) /bin/false: FAIL (0.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.02 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T16.14-825b860/html/results.html

Now we can replay the job by running:

$ avocado run --replay 825b86
JOB ID : 55a0d10132c02b8cc87deb2b480bfd8abbd956c3
SRC JOB ID : 825b860b0c2f6ec48953c638432e3e323f8d7cad
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/job.log
TESTS : 2
 (1/2) /bin/true: PASS (0.01 s)
 (2/2) /bin/false: FAIL (0.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.01 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/html/results.html

The replay feature will retrieve the original job urls, the multiplex
tree and the configuration. Let’s see another example, now using
multiplex file:

$ avocado run /bin/true /bin/false --mux-yaml mux-environment.yaml
JOB ID : bd6aa3b852d4290637b5e771b371537541043d1d
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T21.56-bd6aa3b/job.log
TESTS : 48
 (1/48) /bin/true;1: PASS (0.01 s)
 (2/48) /bin/true;2: PASS (0.01 s)
 (3/48) /bin/true;3: PASS (0.01 s)
 (4/48) /bin/true;4: PASS (0.01 s)
 (5/48) /bin/true;5: PASS (0.01 s)
 (6/48) /bin/true;6: PASS (0.01 s)
 (7/48) /bin/true;7: PASS (0.01 s)
 (8/48) /bin/true;8: PASS (0.01 s)
 (9/48) /bin/true;9: PASS (0.01 s)
 (10/48) /bin/true;10: PASS (0.01 s)
 (11/48) /bin/true;11: PASS (0.01 s)
 (12/48) /bin/true;12: PASS (0.01 s)
 (13/48) /bin/true;13: PASS (0.01 s)
 (14/48) /bin/true;14: PASS (0.01 s)
 (15/48) /bin/true;15: PASS (0.01 s)
 (16/48) /bin/true;16: PASS (0.01 s)
 (17/48) /bin/true;17: PASS (0.01 s)
 (18/48) /bin/true;18: PASS (0.01 s)
 (19/48) /bin/true;19: PASS (0.01 s)
 (20/48) /bin/true;20: PASS (0.01 s)
 (21/48) /bin/true;21: PASS (0.01 s)
 (22/48) /bin/true;22: PASS (0.01 s)
 (23/48) /bin/true;23: PASS (0.01 s)
 (24/48) /bin/true;24: PASS (0.01 s)
 (25/48) /bin/false;1: FAIL (0.01 s)
 (26/48) /bin/false;2: FAIL (0.01 s)
 (27/48) /bin/false;3: FAIL (0.01 s)
 (28/48) /bin/false;4: FAIL (0.01 s)
 (29/48) /bin/false;5: FAIL (0.01 s)
 (30/48) /bin/false;6: FAIL (0.01 s)
 (31/48) /bin/false;7: FAIL (0.01 s)
 (32/48) /bin/false;8: FAIL (0.01 s)
 (33/48) /bin/false;9: FAIL (0.01 s)
 (34/48) /bin/false;10: FAIL (0.01 s)
 (35/48) /bin/false;11: FAIL (0.01 s)
 (36/48) /bin/false;12: FAIL (0.01 s)
 (37/48) /bin/false;13: FAIL (0.01 s)
 (38/48) /bin/false;14: FAIL (0.01 s)
 (39/48) /bin/false;15: FAIL (0.01 s)
 (40/48) /bin/false;16: FAIL (0.01 s)
 (41/48) /bin/false;17: FAIL (0.01 s)
 (42/48) /bin/false;18: FAIL (0.01 s)
 (43/48) /bin/false;19: FAIL (0.01 s)
 (44/48) /bin/false;20: FAIL (0.01 s)
 (45/48) /bin/false;21: FAIL (0.01 s)
 (46/48) /bin/false;22: FAIL (0.01 s)
 (47/48) /bin/false;23: FAIL (0.01 s)
 (48/48) /bin/false;24: FAIL (0.01 s)
RESULTS : PASS 24 | ERROR 0 | FAIL 24 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.29 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T21.56-bd6aa3b/html/results.html

We can replay the job as is, using $ avocado run --replay latest,
or replay the job ignoring the multiplex file, as below:

$ avocado run --replay bd6aa3b --replay-ignore mux
Ignoring multiplex from source job with --replay-ignore.
JOB ID : d5a46186ee0fb4645e3f7758814003d76c980bf9
SRC JOB ID : bd6aa3b852d4290637b5e771b371537541043d1d
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T22.01-d5a4618/job.log
TESTS : 2
 (1/2) /bin/true: PASS (0.01 s)
 (2/2) /bin/false: FAIL (0.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.02 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T22.01-d5a4618/html/results.html

Also, it is possible to replay only the variants that faced a given
result, using the option --replay-test-status. See the example below:

$ avocado run --replay bd6aa3b --replay-test-status FAIL
JOB ID : 2e1dc41af6ed64895f3bb45e3820c5cc62a9b6eb
SRC JOB ID : bd6aa3b852d4290637b5e771b371537541043d1d
JOB LOG : $HOME/avocado/job-results/job-2016-01-12T00.38-2e1dc41/job.log
TESTS : 48
 (1/48) /bin/true;1: SKIP
 (2/48) /bin/true;2: SKIP
 (3/48) /bin/true;3: SKIP
 (4/48) /bin/true;4: SKIP
 (5/48) /bin/true;5: SKIP
 (6/48) /bin/true;6: SKIP
 (7/48) /bin/true;7: SKIP
 (8/48) /bin/true;8: SKIP
 (9/48) /bin/true;9: SKIP
 (10/48) /bin/true;10: SKIP
 (11/48) /bin/true;11: SKIP
 (12/48) /bin/true;12: SKIP
 (13/48) /bin/true;13: SKIP
 (14/48) /bin/true;14: SKIP
 (15/48) /bin/true;15: SKIP
 (16/48) /bin/true;16: SKIP
 (17/48) /bin/true;17: SKIP
 (18/48) /bin/true;18: SKIP
 (19/48) /bin/true;19: SKIP
 (20/48) /bin/true;20: SKIP
 (21/48) /bin/true;21: SKIP
 (22/48) /bin/true;22: SKIP
 (23/48) /bin/true;23: SKIP
 (24/48) /bin/true;24: SKIP
 (25/48) /bin/false;1: FAIL (0.01 s)
 (26/48) /bin/false;2: FAIL (0.01 s)
 (27/48) /bin/false;3: FAIL (0.01 s)
 (28/48) /bin/false;4: FAIL (0.01 s)
 (29/48) /bin/false;5: FAIL (0.01 s)
 (30/48) /bin/false;6: FAIL (0.01 s)
 (31/48) /bin/false;7: FAIL (0.01 s)
 (32/48) /bin/false;8: FAIL (0.01 s)
 (33/48) /bin/false;9: FAIL (0.01 s)
 (34/48) /bin/false;10: FAIL (0.01 s)
 (35/48) /bin/false;11: FAIL (0.01 s)
 (36/48) /bin/false;12: FAIL (0.01 s)
 (37/48) /bin/false;13: FAIL (0.01 s)
 (38/48) /bin/false;14: FAIL (0.01 s)
 (39/48) /bin/false;15: FAIL (0.01 s)
 (40/48) /bin/false;16: FAIL (0.01 s)
 (41/48) /bin/false;17: FAIL (0.01 s)
 (42/48) /bin/false;18: FAIL (0.01 s)
 (43/48) /bin/false;19: FAIL (0.01 s)
 (44/48) /bin/false;20: FAIL (0.01 s)
 (45/48) /bin/false;21: FAIL (0.01 s)
 (46/48) /bin/false;22: FAIL (0.01 s)
 (47/48) /bin/false;23: FAIL (0.01 s)
 (48/48) /bin/false;24: FAIL (0.01 s)
RESULTS : PASS 0 | ERROR 0 | FAIL 24 | SKIP 24 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.19 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-12T00.38-2e1dc41/html/results.html

When replaying jobs that were executed with the --failfast on option, you
can disable the failfast option using --failfast off in the replay job.

To be able to replay a job, avocado records the job data in the same
job results directory, inside a subdirectory named replay. If a
given job has a non-default path to record the logs, when the replay
time comes, we need to inform where the logs are. See the example
below:

$ avocado run /bin/true --job-results-dir /tmp/avocado_results/
JOB ID : f1b1c870ad892eac6064a5332f1bbe38cda0aaf3
JOB LOG : /tmp/avocado_results/job-2016-01-11T22.10-f1b1c87/job.log
TESTS : 1
 (1/1) /bin/true: PASS (0.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.01 s
JOB HTML : /tmp/avocado_results/job-2016-01-11T22.10-f1b1c87/html/results.html

Trying to replay the job, it fails:

$ avocado run --replay f1b1
can't find job results directory in '$HOME/avocado/job-results'

In this case, we have to inform where the job results directory is located:

$ avocado run --replay f1b1 --replay-data-dir /tmp/avocado_results
JOB ID : 19c76abb29f29fe410a9a3f4f4b66387570edffa
SRC JOB ID : f1b1c870ad892eac6064a5332f1bbe38cda0aaf3
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T22.15-19c76ab/job.log
TESTS : 1
 (1/1) /bin/true: PASS (0.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 0.01 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T22.15-19c76ab/html/results.html

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Job Diff

Avocado Diff plugin allows users to easily compare several aspects of
two given jobs. The basic usage is:

$ avocado diff 7025aaba 384b949c
--- 7025aaba9c2ab8b4bba2e33b64db3824810bb5df
+++ 384b949c991b8ab324ce67c9d9ba761fd07672ff
@@ -1,15 +1,15 @@

 COMMAND LINE
-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

 TOTAL TIME
-1.00 s
+0.00 s

 TEST RESULTS
-1-sleeptest.py:SleepTest.test: PASS
+1-passtest.py:PassTest.test: PASS

 ...

Avocado Diff can compare and create an unified diff of:

	Command line.

	Job time.

	Variants and parameters.

	Tests results.

	Configuration.

	Sysinfo pre and post.

Only sections with different content will be included in the results. You
can also enable/disable those sections with --diff-filter. Please see
avocado diff --help for more information.

Jobs can be identified by the Job ID, by the results directory or by the
key latest. Example:

$ avocado diff ~/avocado/job-results/job-2016-08-03T15.56-4b3cb5b/ latest
--- 4b3cb5bbbb2435c91c7b557eebc09997d4a0f544
+++ 57e5bbb3991718b216d787848171b446f60b3262
@@ -1,9 +1,9 @@

 COMMAND LINE
-/usr/bin/avocado run perfmon.py
+/usr/bin/avocado run passtest.py

 TOTAL TIME
-11.91 s
+0.00 s

 TEST RESULTS
-1-test.py:Perfmon.test: FAIL
+1-examples/tests/passtest.py:PassTest.test: PASS

Along with the unified diff, you can also generate the html (option --html)
diff file and, optionally, open it on your preferred browser (option
--open-browser):

$ avocado diff 7025aaba 384b949c --html /tmp/myjobdiff.html
/tmp/myjobdiff.html

If the option --open-browser is used without the --html, we will
create a temporary html file.

For those wiling to use a custom diff tool instead of the Avocado Diff tool,
we offer the option --create-reports, so we create two temporary files
with the relevant content. The file names are printed and user can copy/paste
to the custom diff tool command line:

$ avocado diff 7025aaba 384b949c --create-reports
/var/tmp/avocado_diff_7025aab_zQJjJh.txt /var/tmp/avocado_diff_384b949_AcWq02.txt

$ diff -u /var/tmp/avocado_diff_7025aab_zQJjJh.txt /var/tmp/avocado_diff_384b949_AcWq02.txt
--- /var/tmp/avocado_diff_7025aab_zQJjJh.txt 2016-08-10 21:48:43.547776715 +0200
+++ /var/tmp/avocado_diff_384b949_AcWq02.txt 2016-08-10 21:48:43.547776715 +0200
@@ -1,250 +1,19 @@

 COMMAND LINE
 ============
-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

 TOTAL TIME
 ==========
-1.00 s
+0.00 s

...

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Running Tests Remotely

Running Tests on a Remote Host

Avocado lets you run tests directly in a remote machine with SSH
connection, provided that you properly set it up by installing Avocado
in it.

You can check if this feature (a plugin) is enabled by running:

$ avocado plugins
...
remote Remote machine options for 'run' subcommand
...

Assuming this feature is enabled, you should be able to pass the following options
when using the run command in the Avocado command line tool:

--remote-hostname REMOTE_HOSTNAME
 Specify the hostname to login on remote machine
--remote-port REMOTE_PORT
 Specify the port number to login on remote machine.
 Default: 22
--remote-username REMOTE_USERNAME
 Specify the username to login on remote machine
--remote-password REMOTE_PASSWORD
 Specify the password to login on remote machine

From these options, you are normally going to use –remote-hostname and
–remote-username in case you did set up your VM with password-less
SSH connection (through SSH keys).

Remote Setup

Make sure you have:

	Avocado packages installed. You can see more info on how to do that in
the Getting Started section.

	The remote machine IP address or fully qualified hostname and the SSH port number.

	All pre-requisites for your test to run installed inside the remote machine
(gcc, make and others if you want to compile a 3rd party test suite written
in C, for example).

Optionally, you may have password less SSH login on your remote machine enabled.

Running your test

Once the remote machine is properly setup, you may run your test. Example:

$ scripts/avocado run --remote-hostname 192.168.122.30 --remote-username fedora examples/tests/sleeptest.py examples/tests/failtest.py
REMOTE LOGIN : fedora@192.168.122.30:22
JOB ID : 60ddd718e7d7bb679f258920ce3c39ce73cb9779
JOB LOG : $HOME/avocado/job-results/job-2014-10-23T11.45-a329461/job.log
TESTS : 2
 (1/2) examples/tests/sleeptest.py: PASS (1.00 s)
 (2/2) examples/tests/failtest.py: FAIL (0.00 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 1.01 s

As you can see, Avocado will copy the tests you have to your remote machine and
execute them. A bit of extra logging information is added to your job summary,
mainly to distinguish the regular execution from the remote one. Note here that
we did not need –remote-password because an SSH key was already setup.

Running Tests on a Virtual Machine

Sometimes you don’t want to run a given test directly in your own machine
(maybe the test is dangerous, maybe you need to run it in another Linux
distribution, so on and so forth).

For those scenarios, Avocado lets you run tests directly in VMs
defined as libvirt domains in your system, provided that you properly
set them up.

You can check if this feature (a plugin) is enabled by running:

$ avocado plugins
...
vm Virtual Machine options for 'run' subcommand
...

Assuming this feature is enabled, you should be able to pass the following options
when using the run command in the Avocado command line tool:

--vm Run tests on Virtual Machine
--vm-hypervisor-uri VM_HYPERVISOR_URI
 Specify hypervisor URI driver connection
--vm-domain VM_DOMAIN
 Specify domain name (Virtual Machine name)
--vm-hostname VM_HOSTNAME
 Specify VM hostname to login. By default Avocado
 attempts to automatically find the VM IP address.
--vm-username VM_USERNAME
 Specify the username to login on VM
--vm-password VM_PASSWORD
 Specify the password to login on VM
--vm-cleanup Restore VM to a previous state, before running the
 tests

From these options, you are normally going to use –vm-domain,
–vm-hostname and –vm-username in case you did set up your VM with
password-less SSH connection (through SSH keys).

If your VM has the qemu-guest-agent installed, you can skip the
--vm-hostname option. Avocado will then probe the VM IP from the
agent.

Virtual Machine Setup

Make sure you have:

	A libvirt domain with the Avocado packages installed. You can see
more info on how to do that in the Getting Started section.

	The domain IP address or fully qualified hostname.

	All pre-requesites for your test to run installed inside the VM
(gcc, make and others if you want to compile a 3rd party test suite written
in C, for example).

Optionally, you may have password less SSH login on your VM enabled.

Running your test

Once the virtual machine is properly setup, you may run your test. Example:

$ scripts/avocado run --vm-domain fedora20 --vm-username autotest --vm examples/tests/sleeptest.py examples/tests/failtest.py
VM DOMAIN : fedora20
VM LOGIN : autotest@192.168.122.30
JOB ID : 60ddd718e7d7bb679f258920ce3c39ce73cb9779
JOB LOG : $HOME/avocado/job-results/job-2014-09-16T18.41-60ddd71/job.log
TESTS : 2
 (1/2) examples/tests/sleeptest.py:SleepTest.test: PASS (1.00 s)
 (2/2) examples/tests/failtest.py:FailTest.test: FAIL (0.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
TESTS TIME : 1.01 s

As you can see, Avocado will copy the tests you have to your libvirt domain and
execute them. A bit of extra logging information is added to your job summary,
mainly to distinguish the regular execution from the remote one. Note here that
we did not need –vm-password because the SSH key is already setup.

Running Tests on a Docker container

Avocado also lets you run tests on a Docker container, starting and
cleaning it up automatically with every execution.

You can check if this feature (a plugin) is enabled by running:

$ avocado plugins
...
docker Run tests inside docker container
...

Docker container images

Avocado needs to be present inside the container image in order for
the test execution to be properly performed. There’s one ready to use
image (ldoktor/fedora-avocado) in the default image repository
(docker.io):

$ sudo docker pull ldoktor/fedora-avocado
Using default tag: latest
Trying to pull repository docker.io/ldoktor/fedora-avocado ...
latest: Pulling from docker.io/ldoktor/fedora-avocado
...
Status: Downloaded newer image for docker.io/ldoktor/fedora-avocado:latest

Use custom docker images

One of the possible ways to use (and develop) Avocado is to create a
docker image with your development tree. This is a good way to test
your development branch without breaking your system.

To do so, you can following a few simple steps. Begin by fetching the
source code as usual:

$ git clone github.com/avocado-framework/avocado.git avocado.git

You may want to make some changes to Avocado:

$ cd avocado.git
$ patch -p1 < MY_PATCH

Finally build a docker image:

$ docker build -t fedora-avocado-custom -f contrib/docker/Dockerfile.fedora .

And now you can run tests with your modified Avocado inside your
container:

$ avocado run --docker fedora-avocado-custom examples/tests/passtest.py

Running your test

Assuming your system is properly setup to run Docker, including having
an image with Avocado, you can run a test inside the container with a
command similar to:

$ avocado run passtest.py warntest.py failtest.py --docker ldoktor/fedora-avocado --docker-cmd "sudo docker"
DOCKER : Container id '4bcbcd69801211501a0dde5926c0282a9630adbe29ecb17a21ef04f024366943'
JOB ID : db309f5daba562235834f97cad5f4458e3fe6e32
JOB LOG : $HOME/avocado/job-results/job-2016-07-25T08.01-db309f5/job.log
TESTS : 3
 (1/3) /avocado_remote_test_dir/$HOME/passtest.py:PassTest.test: PASS (0.00 s)
 (2/3) /avocado_remote_test_dir/$HOME/warntest.py:WarnTest.test: WARN (0.00 s)
 (3/3) /avocado_remote_test_dir/$HOME/failtest.py:FailTest.test: FAIL (0.00 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 1 | INTERRUPT 0
TESTS TIME : 0.00 s
JOB HTML : $HOME/avocado/job-results/job-2016-07-25T08.01-db309f5/html/results.html

Environment Variables

Running remote instances os Avocado, for example using remote or vm
plugins, the remote environment has a different set of environment variables.
If you want to make available remotely variables that are available in the
local environment, you can use the run option –env-keep. See the example
below:

$ export MYVAR1=foobar
$ env MYVAR2=foobar2 avocado run passtest.py --env-keep MYVAR1,MYVAR2 --remote-hostname 192.168.122.30 --remote-username fedora

By doing that, both MYVAR1 and MYVAR2 will be available in remote
environment.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Debugging with GDB

Avocado has two different types of GDB support that complement each
other:

	Transparent execution of executables inside the GNU Debugger. This
takes standard and possibly unmodified tests that uses the
avocado.utils.process APIs for running processes. By using a
command line option, the executable is run on GDB. This allows the user
to interact with GDB, but to the test itself, things are pretty much
transparent.

	The avocado.utils.gdb APIs that allows a test to interact with GDB,
including setting a executable to be run, setting breakpoints or any
other types of commands. This requires a test written with that
approach and API in mind.

Tip

Even though this section describes the use of the Avocado GDB
features, which allow live debugging of binaries inside Avocado
tests, it’s also possible to debug some application offline by
using tools such as rr [http://rr-project.org]. Avocado ships
with an example wrapper script (to be used with --wrapper) for
that purpose.

Transparent Execution of Executables

This feature adds a few command line options to the Avocado run
command:

$ avocado run --help
...
GNU Debugger support:

 --gdb-run-bin EXECUTABLE[:BREAKPOINT]
 Run a given executable inside the GNU debugger,
 pausing at a given breakpoint (defaults to "main")
 --gdb-prerun-commands EXECUTABLE:COMMANDS
 After loading an executable in GDB, but before
 actually running it, execute the GDB commands in the
 given file. EXECUTABLE is optional, if omitted
 COMMANDS will apply to all executables
 --gdb-coredump {on,off}
 Automatically generate a core dump when the inferior
 process received a fatal signal such as SIGSEGV or
 SIGABRT
...

To get started you want to use --gdb-run-bin, as shown in the example bellow.

Example

The simplest way is to just run
avocado run --gdb-run-bin=doublefree examples/tests/doublefree.py, which
wraps each executed executable with name doublefree inside GDB server and
stops at the executable entry point.

Optionally you can specify single breakpoint using
--gdb-run-bin=doublefree:$breakpoint (eg: doublefree:1) or just
doublefree: to stop only when an interruption happens (eg: SIGABRT).

It’s worth mentioning that when breakpoint is not reached, the test finishes
without any interruption. This is helpful when you identify regions where you
should never get in your code, or places which interests you and you can run
your code in production and GDB variants. If after a long time you get to this
place, the test notifies you and you can investigate the problem. This is
demonstrated in examples/tests/doublefree_nasty.py test. To unveil the
power of Avocado, run this test using:

avocado run --gdb-run-bin=doublefree: examples/tests/doublefree_nasty.py --gdb-prerun-commands examples/tests/doublefree_nasty.py.data/gdb_pre --mux-yaml examples/tests/doublefree_nasty.py.data/iterations.yaml

which executes 100 iterations of this test while setting all breakpoints from
the examples/tests/doublefree_nasty.py.data/gdb_pre file (you can specify
whatever GDB supports, not only breakpoints).

As you can see this test usually passes, but once in a while it gets into
the problematic area. Imagine this is very hard to spot (dependent on HW
registers, ...) and this is one way to combine regular testing and the
possibility of debugging hard-to-get parts of your code.

Caveats

Currently, when using the Avocado GDB plugin, that is, when using the
–gdb-run-bin option, there are some caveats you should be aware of:

	It is not currently compatible with Avocado’s –output-check-record feature

	There’s no way to perform proper input to the process, that is, manipulate its STDIN

	The process STDERR content is mixed with the content generated by gdbserver on its
own STDERR (because they are in fact, the same thing)

But, you can still depend on the process STDOUT, as exemplified by this fictional
test:

from avocado import Test
from avocado.utils import process

class HelloOutputTest(Test):

 def test(self):
 result = process.run("/path/to/hello", ignore_status=True)
 self.assertIn("hello\n", result.stdout)

If run under GDB or not, result.stdout behavior and content is expected to be the same.

Reasons for the caveats

There are a two basic reasons for the mentioned caveats:

	The architecture of Avocado’s GDB feature

	GDB’s own behavior and limitations

When using the Avocado GDB plugin, that is, –gdb-run-bin, Avocado runs a gdbserver instance
transparently and controls it by means of a gdb process. When a given event happens, say a
breakpoint is reached, it disconnects its own gdb from the server, and allows the user to use
a standard gdb to connect to the gdbserver. This provides a natural and seamless user experience.

But, gdbserver has some limitations at this point, including:

	Not being able to set a controlling tty

	Not separating its own STDERR content from the application being run

These limitations are being addressed both on Avocado and GDB, and will be resolved in future Avocado
versions.

Workaround

If the application you’re running as part of your test can read input from alternative
sources (including devices, files or the network) and generate output likewise, then
you should not be further limited.

GDB support and avocado-virt

Another current limitation is the use of avocado-virt and avocado GDB support.

The supported API for transparent debugging is currently limited to
avocado.utils.process.run(), and does not cover advanced uses of the
avocado.utils.process.SubProcess class. The avocado-virt
extension, though, uses avocado.utils.process.SubProcess class to
execute qemu in the background.

This limitation will be addressed in future versions of avocado and avocado-virt.

avocado.utils.gdb APIs

Avocado’s GDB module, provides three main classes that lets a test writer
interact with a gdb process, a gdbserver process and also use the GDB
remote protocol for interaction with a remote target.

Please refer to avocado.utils.gdb for more information.

Example

Take a look at examples/tests/modify_variable.py test:

def test(self):
 """
 Execute 'print_variable'.
 """
 path = os.path.join(self.srcdir, 'print_variable')
 app = gdb.GDB()
 app.set_file(path)
 app.set_break(6)
 app.run()
 self.log.info("\n".join(app.read_until_break()))
 app.cmd("set variable a = 0xff")
 app.cmd("c")
 out = "\n".join(app.read_until_break())
 self.log.info(out)
 app.exit()
 self.assertIn("MY VARIABLE 'A' IS: ff", out)

You can see that instead of running the executable using
process.run we invoke avocado.utils.gdb.GDB. This allows
us to automate the interaction with the GDB in means of setting
breakpoints, executing commands and querying for output.

When you check the output (--show-job-log) you can see that despite
declaring the variable as 0, ff is injected and printed instead.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Wrap executables run by tests

Avocado allows the instrumentation of executables being run by a test
in a transparent way. The user specifies a script (“the wrapper”) to be
used to run the actual program called by the test.

If the instrumentation script is implemented correctly, it should not
interfere with the test behavior. That is, the wrapper should avoid
changing the return status, standard output and standard error messages
of the original executable.

The user can be specific about which program to wrap (with a shell-like glob),
or if that is omitted, a global wrapper that will apply to all
programs called by the test.

Usage

This feature is implemented as a plugin, that adds the –wrapper option
to the Avocado run command. For a detailed explanation, please consult the
Avocado man page.

Example of a transparent way of running strace as a wrapper:

#!/bin/sh
exec strace -ff -o $AVOCADO_TEST_LOGDIR/strace.log -- $@

To have all programs started by test.py wrapped with ~/bin/my-wrapper.sh:

$ scripts/avocado run --wrapper ~/bin/my-wrapper.sh tests/test.py

To have only my-binary wrapped with ~/bin/my-wrapper.sh:

$ scripts/avocado run --wrapper ~/bin/my-wrapper.sh:*my-binary tests/test.py

Caveats

	It is not possible to debug with GDB (–gdb-run-bin) and use
wrappers (–wrapper) at the same time. These two options are
mutually exclusive.

	You can only set one (global) wrapper. If you need functionality
present in two wrappers, you have to combine those into a single
wrapper script.

	Only executables that are run with the avocado.utils.process APIs
(and other API modules that make use of it, like mod:avocado.utils.build)
are affected by this feature.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Plugin System

Avocado has a plugin system that can be used to extended it in a clean way.

Listing plugins

The avocado command line tool has a builtin plugins command that lets
you list available plugins. The usage is pretty simple:

$ avocado plugins
Plugins that add new commands (avocado.plugins.cli.cmd):
exec-path Returns path to avocado bash libraries and exits.
run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information
...
Plugins that add new options to commands (avocado.plugins.cli):
remote Remote machine options for 'run' subcommand
journal Journal options for the 'run' subcommand
...

Since plugins are (usually small) bundles of Python code, they may fail to load if
the Python code is broken for any reason. Example:

$ avocado plugins
Failed to load plugin from module "avocado.plugins.exec_path": ImportError('No module named foo',)
Plugins that add new commands (avocado.plugins.cli.cmd):
run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information
...

Writing a plugin

What better way to understand how an Avocado plugin works than creating one?
Let’s use another old time favorite for that, the “Print hello world” theme.

Code example

Let’s say you want to write a plugin that adds a new subcommand to the test
runner, hello. This is how you’d do it:

from avocado.plugins.base import CLICmd

class HelloWorld(CLICmd):

 name = 'hello'
 description = 'The classical Hello World! plugin example.'

 def run(self, args):
 print(self.description)

As you can see, this plugins inherits from avocado.plugins.base.CLICmd.
This specific base class allows for the creation of new commands for the Avocado
CLI tool. The only mandatory method to be implemented is run and it’s the plugin main entry point.
In this code example it will simply print the plugin’s description.

Registering Plugins

Avocado makes use of the Stevedore [https://github.com/openstack/stevedore] library to load and activate plugins.
Stevedore itself uses setuptools [https://pythonhosted.org/setuptools/] and its entry points [https://pythonhosted.org/setuptools/pkg_resources.html#entry-points] to register
and find Python objects. So, to make your new plugin visible to Avocado, you need
to add to your setuptools based setup.py file something like:

setup(name='mypluginpack',
...
entry_points={
 'avocado.plugins.cli': [
 'hello = mypluginpack.hello:HelloWorld',
]
}
...

Then, by running either $ python setup.py install or $ python setup.py
develop your plugin should be visible to Avocado.

Fully qualified named for a plugin

The plugin registry mentioned earlier, (setuptools [https://pythonhosted.org/setuptools/] and its entry
points [https://pythonhosted.org/setuptools/pkg_resources.html#entry-points]) is global to a given Python installation. Avocado uses the
namespace prefix avocado.plugins. to avoid name clashes with other
software. Now, inside Avocado itself, there’s no need keep using the
avocado.plugins. prefix.

Take for instance, the Job Pre/Post plugins are defined on
setup.py:

'avocado.plugins.job.prepost': [
 'jobscripts = avocado.plugins.jobscripts:JobScripts'
]

The setuptools entry point namespace is composed of the mentioned
prefix avocado.plugins., which is is then followed by the Avocado
plugin type, in this case, job.prepost.

Inside avocado itself, the fully qualified name for a plugin is the
plugin type, such as job.prepost concatenated to the name used in
the entry point definition itself, in this case, jobscripts.

To summarize, still using the same example, the fully qualified
Avocado plugin name is going to be job.prepost.jobscripts.

Disabling a plugin

Even though a plugin can be installed and registered under
setuptools [https://pythonhosted.org/setuptools/] entry points [https://pythonhosted.org/setuptools/pkg_resources.html#entry-points], it can be explicitly disabled in
Avocado.

The mechanism available to do so is to add entries to the disable
key under the plugins section of the Avocado configuration file.
Example:

[plugins]
disable = ['cli.hello', 'job.prepost.jobscripts']

The exact effect on Avocado when a plugin is disabled depends on the
plugin type. For instance, by disabling plugins of type cli.cmd,
the command implemented by the plugin should no longer be available on
the Avocado command line application. Now, by disabling a
job.prepost plugin, those won’t be executed before/after the
execution of the jobs.

Wrap Up

We have briefly discussed the making of Avocado plugins. We recommend
the Stevedore documentation [http://docs.openstack.org/developer/stevedore/index.html] and also a look at the
avocado.plugins.base module for the various plugin interface definitions.

Some plugins examples are available in the Avocado source tree [https://github.com/avocado-framework/avocado/tree/master/examples/plugins], under examples/plugins.

Finally, exploring the real plugins shipped with Avocado in avocado.plugins
is the final “documentation” source.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Reference Guide

This guide presents information on the Avocado basic design and its internals.

Job, test and identifiers

Job ID

The Job ID is a random SHA1 string that uniquely identifies a given job.

The full form of the SHA1 string is used is most references to a job:

$ avocado run sleeptest.py
JOB ID : 49ec339a6cca73397be21866453985f88713ac34
...

But a shorter version is also used at some places, such as in the job
results location:

JOB LOG : $HOME/avocado/job-results/job-2015-06-10T10.44-49ec339/job.log

Test References

A Test Reference is a string that can be resolved into
(interpreted as) one or more tests by the Avocado Test Resolver.
A given resolver plugin is free to interpret a test reference,
it is completely abstract to the other components of Avocado.

Note

Mapping the Test References to tests can be affected
by command-line switches like –external-runner, which
completelly changes the meaning of the given strings.

Test Name

A test name is an arbitrarily long string that unambiguously
points to the source of a single test. In other words the Avocado
Test Resolver, as configured for a particular job, should return
one and only one test as the interpretation of this name.

This name can be as specific as necessary to make it unique.
Therefore it can contain an arbitrary number of variables,
prefixes, suffixes, tags, etc. It all depends on user
preferences, what is supported by Avocado via its Test Resolvers and
the context of the job.

The output of the Test Resolver when resolving Test References
should always be a list of unambiguous Test Names (for that
particular job).

Notice that although the Test Name has to be unique, one test can
be run more than once inside a job.

By definition, a Test Name is a Test Reference, but the
reciprocal is not necessarily true, as the latter can represent
more than one test.

Variant IDs

The multiplexer component creates different sets of variables
(known as “variants”), to allow tests to be run individually in
each of them.

A Variant ID is an arbitrary and abstract string created by the
multiplexer to identify each variant. It should be unique per
variant inside a set. In other words, the multiplexer generates a
set of variants, identified by unique IDs.

A simpler implementation of the multiplexer uses serial integers
as Variant IDs. A more sophisticated implementation could
generate Variant IDs with more semantic, potentially representing
their contents.

Note

The multiplexer supports serialized variant IDs only

Test ID

A test ID is a string that uniquely identifies a test in the
context of a job. When considering a single job, there are no two
tests with the same ID.

A test ID should encapsulate the Test Name and the Variant ID, to
allow direct identification of a test. In other words, by looking
at the test ID it should be possible to identify:

	What’s the test name

	What’s the variant used to run this test (if any)

Test IDs don’t necessarily keep their uniqueness properties when
considered outside of a particular job, but two identical jobs
run in the exact same environment should generate a identical
sets of Test IDs.

Syntax:

<unique-id>-<test-name>[;<variant-id>]

Examples of test-names:

'/bin/true'
'/bin/grep foobar /etc/passwd'
'passtest.py:Passtest.test'
'file:///tmp/passtest.py:Passtest.test'
'multiple_tests.py:MultipleTests.test_hello'
'type_specific.io-github-autotest-qemu.systemtap_tracing.qemu.qemu_free'

Test Types

Avocado at its simplest configuration can run two different types of tests [1]. You can mix
and match those in a single job.

Instrumented

These are tests written in Python or BASH with the Avocado helpers that use the Avocado test API.

To be more precise, the Python file must contain a class derived from avocado.test.Test.
This means that an executable written in Python is not always an instrumented test, but may work
as a simple test.

The instrumented tests allows the writer finer control over the process
including logging, test result status and other more sophisticated test APIs.

Test statuses PASS, WARN, START and SKIP are considered as
successful builds. The ABORT, ERROR, FAIL, ALERT, RUNNING,
NOSTATUS and INTERRUPTED are considered as failed ones.

Simple

Any executable in your box. The criteria for PASS/FAIL is the return code of the executable.
If it returns 0, the test PASSes, if it returns anything else, it FAILs.

Test Statuses

Avocado sticks to the following definitions of test statuses:

	`PASS`: The test passed, which means all conditions being tested have passed.

	`FAIL`: The test failed, which means at least one condition being tested has
failed. Ideally, it should mean a problem in the software being tested has been found.

	`ERROR`: An error happened during the test execution. This can happen, for example,
if there’s a bug in the test runner, in its libraries or if a resource breaks unexpectedly.
Uncaught exceptions in the test code will also result in this status.

	`SKIP`: The test runner decided a requested test should not be run. This
can happen, for example, due to missing requirements in the test environment
or when there’s a job timeout.

Libraries and APIs

The Avocado libraries and its APIs are a big part of what Avocado is.

But, to avoid having any issues you should understand what parts of the Avocado
libraries are intended for test writers and their respective API stability promises.

Test APIs

At the most basic level there’s the Test APIs which you should use when writing
tests in Python and planning to make use of any other utility library.

The Test APIs can be found in the avocado main module, and its most important
member is the avocado.Test class. By conforming to the avocado.Test
API, that is, by inheriting from it, you can use the full set of utility libraries.

The Test APIs are guaranteed to be stable across a single major version of Avocado.
That means that a test written for a given version of Avocado should not break on later
minor versions because of Test API changes.

Utility Libraries

There are also a large number of utility libraries that can be found under the
avocado.utils namespace. These are very general in nature and can help you
speed up your test development.

The utility libraries may receive incompatible changes across minor versions, but
these will be done in a staged fashion. If a given change to an utility library
can cause test breakage, it will first be documented and/or deprecated, and only
on the next subsequent minor version it will actually be changed.

What this means is that upon updating to later minor versions of Avocado, you
should look at the Avocado Release Notes for changes that may impact your tests.

Core (Application) Libraries

Finally, everything under avocado.core is part of the application’s
infrastructure and should not be used by tests.

Extensions and Plugins can use the core libraries, but API stability is not
guaranteed at any level.

Test Resolution

When you use the Avocado runner, frequently you’ll provide paths to files,
that will be inspected, and acted upon depending on their contents. The
diagram below shows how Avocado analyzes a file and decides what to do with
it:

[image: _images/diagram.png]

It’s important to note that the inspection mechanism is safe (that is, python
classes and files are not actually loaded and executed on discovery and
inspection stage). Due to the fact Avocado doesn’t actually load the code
and classes, the introspection is simple and will not catch things like
buggy test modules, missing imports and miscellaneous bugs in the code you
want to list or run. We recommend only running tests from sources you trust,
use of static checking and reviews in your test development process.

Due to the simple test inspection mechanism, avocado will not recognize test
classes that inherit from a class derived from avocado.Test. Please
refer to the Writing Avocado Tests documentation on how to use the tags functionality
to mark derived classes as avocado test classes.

Results Specification

On a machine that executed tests, job results are available under
[job-results]/job-[timestamp]-[short job ID], where logdir is the configured Avocado
logs directory (see the data dir plugin), and the directory name includes
a timestamp, such as job-2014-08-12T15.44-565e8de. A typical
results directory structure can be seen below

$HOME/avocado/job-results/job-2014-08-13T00.45-4a92bc0/
├── id
├── jobdata
│ ├── args
│ ├── cmdline
│ ├── config
│ ├── multiplex
│ ├── pwd
│ └── urls
├── job.log
├── results.json
├── results.xml
├── sysinfo
│ ├── post
│ │ ├── brctl_show
│ │ ├── cmdline
│ │ ├── cpuinfo
│ │ ├── current_clocksource
│ │ ├── df_-mP
│ │ ├── dmesg_-c
│ │ ├── dmidecode
│ │ ├── fdisk_-l
│ │ ├── gcc_--version
│ │ ├── hostname
│ │ ├── ifconfig_-a
│ │ ├── interrupts
│ │ ├── ip_link
│ │ ├── ld_--version
│ │ ├── lscpu
│ │ ├── lspci_-vvnn
│ │ ├── meminfo
│ │ ├── modules
│ │ ├── mount
│ │ ├── mounts
│ │ ├── numactl_--hardware_show
│ │ ├── partitions
│ │ ├── scaling_governor
│ │ ├── uname_-a
│ │ ├── uptime
│ │ └── version
│ ├── pre
│ │ ├── brctl_show
│ │ ├── cmdline
│ │ ├── cpuinfo
│ │ ├── current_clocksource
│ │ ├── df_-mP
│ │ ├── dmesg_-c
│ │ ├── dmidecode
│ │ ├── fdisk_-l
│ │ ├── gcc_--version
│ │ ├── hostname
│ │ ├── ifconfig_-a
│ │ ├── interrupts
│ │ ├── ip_link
│ │ ├── ld_--version
│ │ ├── lscpu
│ │ ├── lspci_-vvnn
│ │ ├── meminfo
│ │ ├── modules
│ │ ├── mount
│ │ ├── mounts
│ │ ├── numactl_--hardware_show
│ │ ├── partitions
│ │ ├── scaling_governor
│ │ ├── uname_-a
│ │ ├── uptime
│ │ └── version
│ └── profile
└── test-results
 └── tests
 ├── sleeptest.py.1
 │ ├── data
 │ ├── debug.log
 │ └── sysinfo
 │ ├── post
 │ └── pre
 ├── sleeptest.py.2
 │ ├── data
 │ ├── debug.log
 │ └── sysinfo
 │ ├── post
 │ └── pre
 └── sleeptest.py.3
 ├── data
 ├── debug.log
 └── sysinfo
 ├── post
 └── pre

22 directories, 65 files

From what you can see, the results dir has:

	A human readable id in the top level, with the job SHA1.

	A human readable job.log in the top level, with human readable logs of
the task

	Subdirectory jobdata, that contains machine readable data about the job.

	A machine readable results.xml and results.json in the top level,
with a summary of the job information in xUnit/json format.

	A top level sysinfo dir, with sub directories pre, post and
profile, that store sysinfo files pre/post/during job, respectively.

	Subdirectory test-results, that contains a number of subdirectories
(filesystem-friendly test ids). Those test ids represent instances of test
execution results.

Test execution instances specification

The instances should have:

	A top level human readable job.log, with job debug information

	A sysinfo subdir, with sub directories pre and post, that store
sysinfo files pre test and post test, respectively.

	A data subdir, where the test can output a number of files if necessary.

	[1]	Avocado plugins can introduce additional test types.

Job Pre and Post Scripts

Avocado ships with a plugin (installed by default) that allows running
scripts before and after the actual execution of Jobs. A user can be
sure that, when a given “pre” script is run, no test in that job has
been run, and when the “post” scripts are run, all the tests in a
given job have already finished running.

Configuration

By default, the script directory location is:

/etc/avocado/scripts/job

Inside that directory, that is a directory for pre-job scripts:

/etc/avocado/scripts/job/pre.d

And for post-job scripts:

/etc/avocado/scripts/job/post.d

All the configuration about the Pre/Post Job Scripts are placed under
the avocado.plugins.jobscripts config section. To change the
location for the pre-job scripts, your configuration should look
something like this:

[plugins.jobscripts]
pre = /my/custom/directory/for/pre/job/scripts/

Accordingly, to change the location for the post-job scripts, your
configuration should look something like this:

[plugins.jobscripts]
post = /my/custom/directory/for/post/scripts/

A couple of other configuration options are available under the same
section:

	warn_non_existing_dir: gives warnings if the configured (or
default) directory set for either pre or post scripts do not exist

	warn_non_zero_status: gives warnings if a given script (either
pre or post) exits with non-zero status

Script Execution Environment

All scripts are run in separate process with some environment
variables set. These can be used in your scripts in any way you wish:

	AVOCADO_JOB_UNIQUE_ID: the unique job-id.

	AVOCADO_JOB_STATUS: the current status of the job.

	AVOCADO_JOB_LOGDIR: the filesystem location that holds the logs
and various other files for a given job run.

Note: Even though these variables should all be set, it’s a good
practice for scripts to check if they’re set before using their
values. This may prevent unintended actions such as writing to the
current working directory instead of to the AVOCADO_JOB_LOGDIR if
this is not set.

Finally, any failures in the Pre/Post scripts will not alter the
status of the corresponding jobs.

Job Cleanup

It’s possible to register a callback function that will be called when
all the tests have finished running. This effectively allows for a
test job to clean some state it may have left behind.

At the moment, this feature is not intended to be used by test writers,
but it’s seen as a feature for Avocado extensions to make use.

To register a callback function, your code should put a message in a
very specific format in the “runner queue”. The Avocado test runner
code will understand that this message contains a (serialized) function
that will be called once all tests finish running.

Example:

from avocado import Test

def my_cleanup(path_to_file):
 if os.path.exists(path_to_file):
 os.unlink(path_to_file)

class MyCustomTest(Test):
...
 cleanup_file = '/tmp/my-custom-state'
 self.runner_queue.put({"func_at_exit": self.my_cleanup,
 "args": (cleanup_file),
 "once": True})
...

This results in the my_cleanup function being called with
positional argument cleanup_file.

Because once was set to True, only one unique combination of
function, positional arguments and keyword arguments will be
registered, not matter how many times they’re attempted to be
registered. For more information check
avocado.utils.data_structures.CallbackRegister.register().

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Contribution and Community Guide

Useful pointers on how to participate of the Avocado community and contribute.

Hacking and Using Avocado

Since version 0.31.0, our plugin system requires Setuptools entry points to be
registered. If you’re hacking on Avocado and want to use the same, possibly modified,
source for running your tests and experiments, you may do so with one additional step:

$ make develop

On POSIX systems this will create an “egg link” to your original source tree under
“$HOME/.local/lib/pythonX.Y/site-packages”. Then, on your original source tree, an
“egg info” directory will be created, containing, among other things, the Setuptools
entry points mentioned before. This works like a symlink, so you only need to run
this once (unless you add a new entry-point, then you need to re-run it to make it
available).

Avocado supports various plugins, which are distributed as separate projects,
for example “avocado-vt” and “avocado-virt”. These also need to be
deployed and linked in order to work properly with the avocado from
sources (installed version works out of the box). To simplify this you can
use make requirements-plugins from the main avocado project to install
requirements of the plugins and make link to link and develop the
plugins. The workflow could be:

$ cd $AVOCADO_PROJECTS_DIR
$ git clone $AVOCADO_GIT
$ git clone $AVOCADO_PROJECT2
$ # Add more projects
$ cd avocado # go into the main avocado project dir
$ make requirements-plugins
$ make link

You should see the process and status for each directory.

Contact information

	Avocado-devel mailing list: https://www.redhat.com/mailman/listinfo/avocado-devel

	Avocado IRC channel: irc.oftc.net #avocado

Contributing to Avocado

Avocado uses github and the github pull request development model. You can
find a primer on how to use github pull requests
here [https://help.github.com/articles/using-pull-requests]. Every Pull
Request you send will be automatically tested by
Travis CI [https://travis-ci.org/avocado-framework/avocado] and review will
take place in the Pull Request as well.

For people who don’t like the github development model, there is the option
of sending the patches to the Mailing List, following a workflow more
traditional in Open Source development communities. The patches will be
reviewed in the Mailing List, should you opt for that. Then a maintainer will
collect the patches, integrate them on a branch, and then those patches will
be submitted as a github Pull Request. This process tries to ensure that every
contributed patch goes through the CI jobs before it is considered good for
inclusion.

Git workflow

	Fork the repository in github.

	Clone from your fork:

$ git clone git@github.com:<username>/avocado.git

	Enter the directory:

$ cd avocado

	Create a remote, pointing to the upstream:

$ git remote add upstream git@github.com:avocado-framework/avocado.git

	Configure your name and e-mail in git:

$ git config --global user.name "Your Name"
$ git config --global user.email email@foo.bar

	Golden tip: never work on local branch master. Instead, create a new
local branch and checkout to it:

$ git checkout -b my_new_local_branch

	Code and then commit your changes:

$ git add new-file.py
$ git commit -s
or "git commit -as" to commit all changes

	Write a good commit message, pointing motivation, issues that you’re
addressing. Usually you should try to explain 3 points in the commit
message: motivation, approach and effects:

header <- Limited to 72 characters. No period.
 <- Blank line
message <- Any number of lines, limited to 72 characters per line.
 <- Blank line
Reference: <- External references, one per line (issue, trello, ...)
Signed-off-by: <- Signature (created by git commit -s)

	Make sure your code is working (install your version of avocado, test
your change, run make check to make sure you didn’t introduce any
regressions).

	Paste the job.log file content from the previous step in a pastebin
service, like fpaste.org. If you have fpaste installed, you can
simply run:

$ fpaste ~/avocado/job-results/latest/job.log

	Rebase your local branch on top of upstream master:

$ git fetch
$ git rebase upstream/master
(resolve merge conflicts, if any)

	Push your commit(s) to your fork:

$ git push origin my_new_local_branch

	Create the Pull Request on github. Add the relevant information to the
Pull Request description.

	In the Pull Request discussion page, comment with the link to the
job.log output/file.

	Check if your Pull Request passes the CI (travis). Your Pull Request
will probably be ignored until it’s all green.

Now you’re waiting for feedback on github Pull Request page. Once you
get some, join the discussion, answer the questions, make clear if you’re
going to change the code based on some review and, if not, why. Feel free
to disagree with the reviewer, they probably have different use cases and
opinions, which is expected. Try describing yours and suggest other
solutions, if necessary.

New versions of your code should not be force-updated (unless explicitly
requested by the code reviewer). Instead, you should:

	Create a new branch out of your previous branch:

$ git checkout my_new_local_branch
$ git checkout -b my_new_local_branch_v2

	Code, and amend the commit(s) and/or create new commits. If you have
more than one commit in the PR, you will probably need to rebase
interactively to amend the right commits. git cola or git citool
can be handy here.

	Rebase your local branch on top of upstream master:

$ git fetch
$ git rebase upstream/master
(resolve merge conflicts, if any)

	Push your changes:

$ git push origin my_new_local_branch_v2

	Create a new Pull Request for this new branch. In the Pull Request
description, point the previous Pull Request and the changes the current
Pull Request introduced when compared to the previous Pull Request(s).

	Close the previous Pull Request on github.

After your PR gets merged, you can sync the master branch on your local
repository propagate the sync to the master branch in your fork
repository on github:

$ git checkout master
$ git pull upstream master
$ git push

From time to time, you can remove old branches to avoid pollution:

To list branches along with time reference:
$ git for-each-ref --sort='-authordate:iso8601' --format=' %(authordate:iso8601)%09%(refname)' refs/heads
To remove branches from your fork repository:
$ git push origin :my_old_branch

Signing commits

Optionally you can sign the commits using GPG signatures. Doing
it is simple and it helps from unauthorized code being merged without notice.

All you need is a valid GPG signature, git configuration, slightly modified
workflow to use the signature and eventually even setup in github so one
benefits from the “nice” UI.

Get a GPG signature:

Google for howto, but generally it works like this
$ gpg --gen-key # defaults are usually fine (using expiration is recommended)
$ gpg --send-keys $YOUR_KEY # to propagate the key to outer world

Enable it in git:

$ git config --global user.signingkey $YOUR_KEY

(optional) Link the key with your GH account:

1. Login to github
2. Go to settings->SSH and GPG keys
3. Add New GPG key
4. run $(gpg -a --export $YOUR_EMAIL) in shell to see your key
5. paste the key there

Use it:

You can sign commits by using '-S'
$ git commit -S
You can sign merges by using '-S'
$ git merge -S

Warning

You can not use the merge button on github to do signed merges as github
does not have your private key.

Tests Repositories

We encourage you or your company to create public Avocado tests
repositories so the community can also benefit of your tests. We will be
pleased to advertise your repository here in our documentation.

List of known community and third party maintained repositories:

	https://github.com/avocado-framework-tests/avocado-misc-tests:
Community maintained Avocado miscellaneous tests repository. There you
will find, among others, performance tests like lmbench,
stress, cpu tests like ebizzy and generic tests like ltp.
Some of them were ported from Autotest Client Tests repository.

	https://github.com/scylladb/scylla-cluster-tests:
Avocado tests for Scylla Clusters. Those tests can automatically create
a scylla cluster, some loader machines and then run operations defined by
the test writers, such as database workloads.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Avocado development tips

Interrupting test

In case you want to “pause” the running test, you can use SIGTSTP (ctrl+z)
signal sent to the main avocado process. This signal is forwarded to test
and it’s children processes. To resume testing you repeat the same signal.

Note: that the job/test timeouts are still enabled on stopped processes.

In tree utils

You can find handy utils in avocado.utils.debug:

measure_duration

Decorator can be used to print current duration of the executed function
and accumulated duration of this decorated function. It’s very handy
when optimizing.

Usage:

from avocado.utils import debug
...
@debug.measure_duration
def your_function(...):

During the execution look for:

PERF: <function your_function at 0x29b17d0>: (0.1s, 11.3s)
PERF: <function your_function at 0x29b17d0>: (0.2s, 11.5s)

Line-profiler

You can measure line-by-line performance by using line_profiler. You can
install it using pip:

pip install line_profiler

and then simply mark the desired function with @profile (no need to import
it from anywhere). Then you execute:

kernprof -l -v ./scripts/avocado run ...

and when the process finishes you’ll see the profiling information. (sometimes
the binary is called kernprof.py)

Remote debug with Eclipse

Eclipse is a nice debugging frontend which allows remote debugging. It’s very
simple. The only thing you need is Eclipse with pydev plugin. Then you
need to locate the pydevd path (usually
$INSTALL_LOCATION/plugins/org.python.pydev_*/pysrc or
~/.eclipse/plugins/org.python.pydev_*/pysrc. Then you set the breakpoint by:

import sys
sys.path.append("$PYDEV_PATH")
import pydevd
pydevd.settrace("$IP_ADDR_OF_ECLIPSE_MACHINE")

Alternatively you can export PYTHONPATH=$PYDEV_PATH and use only last 2 lines.

Before you run the code, you need to start the Eclipse’s debug server. Switch
to Debug perspective (you might need to open it first
Window->Perspective->Open Perspective). Then start the server from
Pydev->Start Debug Server.

Now whenever the pydev.settrace() code is executed, it contacts Eclipse debug
server (port 8000 by default, don’t forget to open it) and you can
easily continue in execution. This works on every remote machine which
has access to your Eclipse’s port 8000 (you can override it).

Using Trello cards in Eclipse

Eclipse allows us to create tasks. They are pretty cool as you see the
status (not started, started, current, done) and by switching tasks it
automatically resumes where you previously finished (opened files, ...)

Avocado is planned using Trello, which is not yet supported by Eclipse.
Anyway there is a way to at least get read-only list of your commits.
This guide is based on https://docs.google.com/document/d/1jvmJcCStE6QkJ0z5ASddc3fNmJwhJPOFN7X9-GLyabM/ which didn’t work well with lables and
descriptions. The only difference is you need to use Query Pattern:

\"url\":\"https://trello.com/[^/]*/[^/]*/({Id}[^\"]+)({Description})\"

Setup Trello key:

	Create a Trello account

	Get (developer_key) here:
https://trello.com/1/appKey/generate

	Get user_token from following address (replace key with your key):
https://trello.com/1/authorize?key=$developer_key&name=Mylyn%20Tasks&expiration=never&response_type=token

	Address with your assigned tasks (task_addr) is:
https://trello.com/1/members/my/cards?key=developer_key&token=$user_token
Open it in web browser and you should see [] or [$list_of_cards]
without any passwords.

Configure Eclipse:

	We’re going to need Web Templates, which are not yet upstream. We need to
use incubator version.

	Help->Install New Software...

	-> Add

	Name: Incubator

	Location: http://download.eclipse.org/mylyn/incubator/3.10

	-> OK

	Select Mylyn Tasks Connector: Web Templates (Advanced) (Incubation) (use filter text to find it)

	Install it (Next->Agree->Next...)

	Restart Eclipse

	Open the Mylyn Team Repositories Window->Show View->Other...->Mylyn->Team Repositories

	Right click the Team Repositories and select New->Repository

	Use Task Repository -> Next

	Use Web Template (Advanced) -> Next

	In the Properties for Task Repository dialog box, enter
https://trello.com

	In the Server field and give the repository a label (eg. Trello API).

	In the Additional Settings section set applicationkey = $developer_key
and userkey = $user_token.

	In the Advanced Configuration set the Task URL to https://trello.com/c/

	Set New Task URL to https://trello.com

	Set the Query Request URL (no changes required):
https://trello.com/1/members/my/cards?key=${applicationkey}&token=${userkey}

	For the Query Pattern enter “url”:”https://trello.com/[^/]*/[^/]*/({Id}[^”]+)({Description})”

	-> Finish

Create task query:

	Create a query by opening the Mylyn Task List.

	Right click the pane and select New Query.

	Select Trello API as the repository.

	-> Next

	Enter the name of your query.

	Expand the Advanced Configuration and make sure the Query Pattern is filled in

	Press Preview to confirm that there are no errors.

	Press Finish.

	Trello tasks assigned to you will now appear in the Mylyn Task List.

Noy you can start using tasks by clicking the small bubble in front of the
name. This closes all editors. Try openning some and then click the bubble
again. They should get closed. When you click the bubble third time, it should
resume all the open editors from before.

My usual workflow is:

	git checkout $branch

	Eclipse: select task

	git commit ...

	Eclipse: unselect task

	git checkout $other_branch

	Eclipse: select another_task

This way you always have all the files present and you can easily resume
your work.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Releasing avocado

So you have all PRs approved, the Sprint meeting is done and now
Avocado is ready to be released. Great, let’s go over (most of) the
details you need to pay attention to.

Bump the version number

Go through the avocado code base and update the release number. At the time
of this writing, the diff looked like this:

diff --git a/avocado.spec b/avocado.spec
index eb910e8..21313ca 100644
--- a/avocado.spec
+++ b/avocado.spec
@@ -1,7 +1,7 @@
 Summary: Avocado Test Framework
 Name: avocado
-Version: 0.28.0
-Release: 2%{?dist}
+Version: 0.29.0
+Release: 0%{?dist}
 License: GPLv2
 Group: Development/Tools
 URL: http://avocado-framework.github.io/
@@ -104,6 +104,9 @@ examples of how to write tests on your own.
 %{_datadir}/avocado/wrappers

 %changelog
+* Wed Oct 7 2015 Lucas Meneghel Rodrigues <lmr@redhat.com> - 0.29.0-0
+- New upstream release 0.29.0
+
 * Wed Sep 16 2015 Lucas Meneghel Rodrigues <lmr@redhat.com> - 0.28.0-2
 - Add pystache, aexpect, psutil, sphinx and yum/dnf dependencies for functional/unittests

diff --git a/avocado/core/version.py b/avocado/core/version.py
index c927b19..a555af5 100755
--- a/avocado/core/version.py
+++ b/avocado/core/version.py
@@ -18,7 +18,7 @@ __all__ = ['MAJOR', 'MINOR', 'RELEASE', 'VERSION']

 MAJOR = 0
-MINOR = 28
+MINOR = 29
 RELEASE = 0

 VERSION = "%s.%s.%s" % (MAJOR, MINOR, RELEASE)
diff --git a/setup.cfg b/setup.cfg
index 76953b9..5cf90e9 100644
--- a/setup.cfg
+++ b/setup.cfg
@@ -1,6 +1,6 @@
 [metadata]
 name = avocado
-version = 0.28.0
+version = 0.29.0
 summary = Avocado Test Framework
 description-file =
 README.rst

You can find on git such commits that will help you get oriented for other
repos.

Which repositories you should pay attention to

In general, a release of avocado includes taking a look and eventually release
content in the following repositories:

	avocado

	avocado-vt

Tag all repositories

When everything is in good shape, commit the version changes and tag
that commit in master with:

$ git tag -u $(GPG_ID) -s $(RELEASE) -m 'Avocado Release $(RELEASE)'

Then the tag should be pushed to the GIT repository with:

$ git push --tags

Build RPMs

Go to the source directory and do:

$ make rpm
...
+ exit 0

This should be all. It will build packages using mock, targeting
your default configuration. That usually means the same platform
you’re currently on.

Sign Packages

All the packages should be signed for safer public consumption. The
process is, of course, dependent on the private keys, put is based on
running:

$ rpm --resign

For more information look at the rpmsign(8) man page.

Upload packages to repository

The current distribution method is based on serving content over HTTP.
That means that repository metadata is created locally and
synchronized to the well know public Web server. A process similar
to:

$ cd $REPO_ROOT && for DIR in epel-?-noarch fedora-??-noarch; \
do cd $DIR && createrepo -v . && cd ..; done;

Creates the repo metadata locally. Then a command similar to:

$ rsync -va $REPO_ROOT user@repo_web_server:/path

Is used to copy the content over.

Write release notes

Release notes give an idea of what has changed on a given development
cycle. Good places to go for release notes are:

	Git logs

	Trello Cards (Look for the Done lists)

	Github compare views: https://github.com/avocado-framework/avocado/compare/0.28.0...0.29.0

Go there and try to write a text that represents the changes that the
release encompasses.

Upload package to PyPI

Users may also want to get Avocado from the PyPI repository, so please upload
there as well. To help with the process, please run:

$ make pypi

And follow the URL and brief instructions given.

Send e-mails to avocado-devel and other places

Send the e-mail with the release notes to avocado-devel and
virt-test-devel.

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Test APIs

This is the bare mininum set of APIs that users should use, and can rely on, while writing tests.

Module contents

	
avocado.main

	alias of TestProgram

	
class avocado.Test(methodName='test', name=None, params=None, base_logdir=None, job=None, runner_queue=None)

	Bases: unittest.case.TestCase

Base implementation for the test class.

You’ll inherit from this to write your own tests. Typically you’ll want
to implement setUp(), test*() and tearDown() methods on your own tests.

Initializes the test.

	Parameters:	
	methodName – Name of the main method to run. For the sake of
compatibility with the original unittest class,
you should not set this.

	name (avocado.core.test.TestName) – Pretty name of the test name. For normal tests,
written with the avocado API, this should not be
set. This is reserved for internal Avocado use,
such as when running random executables as tests.

	base_logdir – Directory where test logs should go. If None
provided, it’ll use
avocado.data_dir.create_job_logs_dir().

	job – The job that this test is part of.

	Raises:	avocado.core.test.NameNotTestNameError

	
basedir

	The directory where this test (when backed by a file) is located at

	
cache_dirs = None

	

	
datadir

	Returns the path to the directory that contains test data files

	
default_params = {}

	

	
error(message=None)

	Errors the currently running test.

After calling this method a test will be terminated and have its status
as ERROR.

	Parameters:	message (str [http://docs.python.org/library/functions.html#str]) – an optional message that will be recorded in the logs

	
fail(message=None)

	Fails the currently running test.

After calling this method a test will be terminated and have its status
as FAIL.

	Parameters:	message (str [http://docs.python.org/library/functions.html#str]) – an optional message that will be recorded in the logs

	
fetch_asset(name, asset_hash=None, algorithm='sha1', locations=None, expire=None)

	Method o call the utils.asset in order to fetch and asset file
supporting hash check, caching and multiple locations.

	Parameters:	
	name – the asset filename or URL

	asset_hash – asset hash (optional)

	algorithm – hash algorithm (optional, defaults to sha1)

	locations – list of URLs from where the asset can be
fetched (optional)

	expire – time for the asset to expire

	Raises:	EnvironmentError – When it fails to fetch the asset

	Returns:	asset file local path

	
filename

	Returns the name of the file (path) that holds the current test

	
get_state()

	Serialize selected attributes representing the test state

	Returns:	a dictionary containing relevant test state data

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
report_state()

	Send the current test state to the test runner process

	
run_avocado()

	Wraps the run method, for execution inside the avocado runner.

	Result:	Unused param, compatibility with unittest.TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase].

	
skip(message=None)

	Skips the currently running test.

This method should only be called from a test’s setUp() method, not
anywhere else, since by definition, if a test gets to be executed, it
can’t be skipped anymore. If you call this method outside setUp(),
avocado will mark your test status as ERROR, and instruct you to
fix your test in the error message.

	Parameters:	message (str [http://docs.python.org/library/functions.html#str]) – an optional message that will be recorded in the logs

	
srcdir = None

	

	
workdir = None

	

	
avocado.fail_on(exceptions=None)

	Fail the test when decorated function produces exception of the specified
type.

(For example, our method may raise IndexError on tested software failure.
We can either try/catch it or use this decorator instead)

	Parameters:	exceptions – Tuple or single exception to be assumed as
test fail [Exception]

	Note:	self.error and self.skip behavior remains intact

	Note:	To allow simple usage param “exceptions” must not be callable

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Utilities APIs

This is a set of utility APIs that Avocado provides as added value to test writers.

Subpackages

	avocado.utils.external package
	Submodules

	avocado.utils.external.gdbmi_parser module

	avocado.utils.external.spark module

	Module contents

Submodules

avocado.utils.archive module

Module to help extract and create compressed archives.

	
exception avocado.utils.archive.ArchiveException

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

Base exception for all archive errors.

	
class avocado.utils.archive.ArchiveFile(filename, mode='r')

	Bases: object [http://docs.python.org/library/functions.html#object]

Class that represents an Archive file.

Archives are ZIP files or Tarballs.

Creates an instance of ArchiveFile.

	Parameters:	
	filename – the archive file name.

	mode – file mode, r read, w write.

	
add(filename, arcname=None)

	Add file to the archive.

	Parameters:	
	filename – file to archive.

	arcname – alternative name for the file in the archive.

	
close()

	Close archive.

	
extract(path='.')

	Extract all files from the archive.

	Parameters:	path – destination path.

	
list()

	List files to the standard output.

	
classmethod open(filename, mode='r')

	Creates an instance of ArchiveFile.

	Parameters:	
	filename – the archive file name.

	mode – file mode, r read, w write.

	
avocado.utils.archive.compress(filename, path)

	Compress files in an archive.

	Parameters:	
	filename – archive file name.

	path – origin directory path to files to compress. No
individual files allowed.

	
avocado.utils.archive.create(filename, path)

	Compress files in an archive.

	Parameters:	
	filename – archive file name.

	path – origin directory path to files to compress. No
individual files allowed.

	
avocado.utils.archive.extract(filename, path)

	Extract files from an archive.

	Parameters:	
	filename – archive file name.

	path – destination path to extract to.

	
avocado.utils.archive.is_archive(filename)

	Test if a given file is an archive.

	Parameters:	filename – file to test.

	Returns:	True if it is an archive.

	
avocado.utils.archive.uncompress(filename, path)

	Extract files from an archive.

	Parameters:	
	filename – archive file name.

	path – destination path to extract to.

avocado.utils.asset module

Asset fetcher from multiple locations

	
class avocado.utils.asset.Asset(name, asset_hash, algorithm, locations, cache_dirs, expire=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Try to fetch/verify an asset file from multiple locations.

Initialize the Asset() class.

	Parameters:	
	name – the asset filename. url is also supported

	asset_hash – asset hash

	algorithm – hash algorithm

	locations – list of locations fetch asset from

	cache_dirs – list of cache directories

	expire – time in seconds for the asset to expire

	
fetch()

	Fetches the asset. First tries to find the asset on the provided
cache_dirs list. Then tries to download the asset from the locations
list provided.

	Raises:	EnvironmentError – When it fails to fetch the asset

	Returns:	The path for the file on the cache directory.

avocado.utils.astring module

Operations with strings (conversion and sanitation).

The unusual name aims to avoid causing name clashes with the stdlib module
string. Even with the dot notation, people may try to do things like

import string
...
from avocado.utils import string

And not notice until their code starts failing.

	
avocado.utils.astring.bitlist_to_string(data)

	Transform from bit list to ASCII string.

	Parameters:	data – Bit list to be transformed

	
avocado.utils.astring.iter_tabular_output(matrix, header=None)

	Generator for a pretty, aligned string representation of a nxm matrix.

This representation can be used to print any tabular data, such as
database results. It works by scanning the lengths of each element
in each column, and determining the format string dynamically.

	Parameters:	
	matrix – Matrix representation (list with n rows of m elements).

	header – Optional tuple or list with header elements to be displayed.

	
avocado.utils.astring.shell_escape(command)

	Escape special characters from a command so that it can be passed
as a double quoted (” ”) string in a (ba)sh command.

	Parameters:	command – the command string to escape.

	Returns:	The escaped command string. The required englobing double
quotes are NOT added and so should be added at some point by
the caller.

See also: http://www.tldp.org/LDP/abs/html/escapingsection.html

	
avocado.utils.astring.string_safe_encode(string)

	People tend to mix unicode streams with encoded strings. This function
tries to replace any input with a valid utf-8 encoded ascii stream.

	
avocado.utils.astring.string_to_bitlist(data)

	Transform from ASCII string to bit list.

	Parameters:	data – String to be transformed

	
avocado.utils.astring.string_to_safe_path(string)

	Convert string to a valid file/dir name.
:param string: String to be converted
:return: String which is safe to pass as a file/dir name (on recent fs)

	
avocado.utils.astring.strip_console_codes(output, custom_codes=None)

	Remove the Linux console escape and control sequences from the console
output. Make the output readable and can be used for result check. Now
only remove some basic console codes using during boot up.

	Parameters:	
	output (string [http://docs.python.org/library/string.html#module-string]) – The output from Linux console

	custom_codes – The codes added to the console codes which is not
covered in the default codes

	Returns:	the string without any special codes

	Return type:	string [http://docs.python.org/library/string.html#module-string]

	
avocado.utils.astring.tabular_output(matrix, header=None)

	Pretty, aligned string representation of a nxm matrix.

This representation can be used to print any tabular data, such as
database results. It works by scanning the lengths of each element
in each column, and determining the format string dynamically.

	Parameters:	
	matrix – Matrix representation (list with n rows of m elements).

	header – Optional tuple or list with header elements to be displayed.

	Returns:	String with the tabular output, lines separated by unix line feeds.

	Return type:	str [http://docs.python.org/library/functions.html#str]

avocado.utils.aurl module

URL related functions.

The strange name is to avoid accidental naming collisions in code.

	
avocado.utils.aurl.is_url(path)

	Return True if path looks like an URL.

	Parameters:	path – path to check.

	Return type:	Boolean.

avocado.utils.build module

	
avocado.utils.build.make(path, make='make', env=None, extra_args='', ignore_status=False, allow_output_check='none')

	Run make, adding MAKEOPTS to the list of options.

	Parameters:	
	make – what make command name to use.

	env – dictionary with environment variables to be set before
calling make (e.g.: CFLAGS).

	extra – extra command line arguments to pass to make.

	allow_output_check (str [http://docs.python.org/library/functions.html#str]) – Whether to log the command stream outputs
(stdout and stderr) of the make process in
the test stream files. Valid values: ‘stdout’,
for allowing only standard output, ‘stderr’,
to allow only standard error, ‘all’,
to allow both standard output and error,
and ‘none’, to allow none to be
recorded (default). The default here is
‘none’, because usually we don’t want
to use the compilation output as a reference
in tests.

	Returns:	exit status of the make process

	
avocado.utils.build.run_make(path, make='make', env=None, extra_args='', ignore_status=False, allow_output_check='none')

	Run make, adding MAKEOPTS to the list of options.

	Parameters:	
	make – what make command name to use.

	env – dictionary with environment variables to be set before
calling make (e.g.: CFLAGS).

	extra – extra command line arguments to pass to make.

	allow_output_check (str [http://docs.python.org/library/functions.html#str]) – Whether to log the command stream outputs
(stdout and stderr) of the make process in
the test stream files. Valid values: ‘stdout’,
for allowing only standard output, ‘stderr’,
to allow only standard error, ‘all’,
to allow both standard output and error,
and ‘none’, to allow none to be
recorded (default). The default here is
‘none’, because usually we don’t want
to use the compilation output as a reference
in tests.

	Returns:	the make command result object

avocado.utils.cpu module

Get information from the current’s machine CPU.

	
avocado.utils.cpu.cpu_has_flags(flags)

	Check if a list of flags are available on current CPU info

	Parameters:	flags (list) – A list of cpu flags that must exists on the current CPU.

	Returns:	bool True if all the flags were found or False if not

	Return type:	list

	
avocado.utils.cpu.cpu_online_list()

	Reports a list of indexes of the online cpus

	
avocado.utils.cpu.get_cpu_arch()

	Work out which CPU architecture we’re running on

	
avocado.utils.cpu.get_cpu_vendor_name()

	Get the current cpu vendor name

	Returns:	string ‘intel’ or ‘amd’ or ‘power7’ depending on the
current CPU architecture.

	Return type:	string

avocado.utils.crypto module

	
avocado.utils.crypto.hash_file(filename, size=None, algorithm='md5')

	Calculate the hash value of filename.

If size is not None, limit to first size bytes.
Throw exception if something is wrong with filename.
Can be also implemented with bash one-liner (assuming size%1024==0):

dd if=filename bs=1024 count=size/1024 | sha1sum -

	Parameters:	
	filename – Path of the file that will have its hash calculated.

	method – Method used to calculate the hash. Supported methods:
* md5
* sha1

	size – If provided, hash only the first size bytes of the file.

	Returns:	Hash of the file, if something goes wrong, return None.

	
avocado.utils.crypto.hash_wrapper(algorithm='md5', data=None)

	Returns an hash object of data using either md5 or sha1 only.

	Parameters:	input – Optional input string that will be used to update the hash.

	Returns:	Hash object.

avocado.utils.data_factory module

Generate data useful for the avocado framework and tests themselves.

	
avocado.utils.data_factory.generate_random_string(length, ignore='!"#$%&\'()*+, -./:;<=>?@[\\]^_`{|}~', convert='')

	Generate a random string using alphanumeric characters.

	Parameters:	
	length (int [http://docs.python.org/library/functions.html#int]) – Length of the string that will be generated.

	ignore (str [http://docs.python.org/library/functions.html#str]) – Characters that will not include in generated string.

	convert (str [http://docs.python.org/library/functions.html#str]) – Characters that need to be escaped (prepend “”).

	Returns:	The generated random string.

	
avocado.utils.data_factory.make_dir_and_populate(basedir='/tmp')

	Create a directory in basedir and populate with a number of files.

The files just have random text contents.

	Parameters:	basedir (str [http://docs.python.org/library/functions.html#str]) – Base directory where directory should be generated.

	Returns:	Path of the dir created and populated.

	Return type:	str [http://docs.python.org/library/functions.html#str]

avocado.utils.data_structures module

This module contains handy classes that can be used inside
avocado core code or plugins.

	
class avocado.utils.data_structures.Borg

	Multiple instances of this class will share the same state.

This is considered a better design pattern in Python than
more popular patterns, such as the Singleton. Inspired by
Alex Martelli’s article mentioned below:

	See:	http://www.aleax.it/5ep.html

	
class avocado.utils.data_structures.CallbackRegister(name, log)

	Bases: object [http://docs.python.org/library/functions.html#object]

Registers pickable functions to be executed later.

	Parameters:	name – Human readable identifier of this register

	
register(func, args, kwargs, once=False)

	Register function/args to be called on self.destroy()
:param func: Pickable function
:param args: Pickable positional arguments
:param kwargs: Pickable keyword arguments
:param once: Add unique (func,args,kwargs) combination only once

	
run()

	Call all registered function

	
unregister(func, args, kwargs)

	Unregister (func,args,kwargs) combination
:param func: Pickable function
:param args: Pickable positional arguments
:param kwargs: Pickable keyword arguments

	
class avocado.utils.data_structures.LazyProperty(f_get)

	Bases: object [http://docs.python.org/library/functions.html#object]

Lazily instantiated property.

Use this decorator when you want to set a property that will only be
evaluated the first time it’s accessed. Inspired by the discussion in
the Stack Overflow thread below:

	See:	http://stackoverflow.com/questions/15226721/

	
avocado.utils.data_structures.compare_matrices(matrix1, matrix2, threshold=0.05)

	Compare 2 matrices nxm and return a matrix nxm with comparison data and
stats. When the first columns match, they are considered as header and
included in the results intact.

	Parameters:	
	matrix1 – Reference Matrix of floats; first column could be header.

	matrix2 – Matrix that will be compared; first column could be header

	threshold – Any difference greater than this percent threshold will
be reported.

	Returns:	Matrix with the difference in comparison, number of improvements,
number of regressions, total number of comparisons.

	
avocado.utils.data_structures.geometric_mean(values)

	Evaluates the geometric mean for a list of numeric values.
This implementation is slower but allows unlimited number of values.
:param values: List with values.
:return: Single value representing the geometric mean for the list values.
:see: http://en.wikipedia.org/wiki/Geometric_mean

	
avocado.utils.data_structures.ordered_list_unique(object_list)

	Returns an unique list of objects, with their original order preserved

	
avocado.utils.data_structures.time_to_seconds(time)

	Convert time in minutes, hours and days to seconds.
:param time: Time, optionally including the unit (i.e. ‘10d’)

avocado.utils.debug module

This file contains tools for (not only) Avocado developers.

	
avocado.utils.debug.log_calls(length=None, cls_name=None)

	Use this as decorator to log the function call altogether with arguments.
:param length: Max message length
:param cls_name: Optional class name prefix

	
avocado.utils.debug.log_calls_class(length=None)

	Use this as decorator to log the function methods’ calls.
:param length: Max message length

	
avocado.utils.debug.measure_duration(func)

	Use this as decorator to measure duration of the function execution.
The output is “Function $name: ($current_duration, $accumulated_duration)”

avocado.utils.disk module

Disk utilities

	
avocado.utils.disk.freespace(path)

	

avocado.utils.distro module

This module provides the client facilities to detect the Linux Distribution
it’s running under.

	
class avocado.utils.distro.LinuxDistro(name, version, release, arch)

	Bases: object [http://docs.python.org/library/functions.html#object]

Simple collection of information for a Linux Distribution

Initializes a new Linux Distro

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – a short name that precisely distinguishes this Linux
Distribution among all others.

	version (str [http://docs.python.org/library/functions.html#str]) – the major version of the distribution. Usually this
is a single number that denotes a large development
cycle and support file.

	release (str [http://docs.python.org/library/functions.html#str]) – the release or minor version of the distribution.
Usually this is also a single number, that is often
omitted or starts with a 0 when the major version
is initially release. It’s often associated with a
shorter development cycle that contains incremental
a collection of improvements and fixes.

	arch (str [http://docs.python.org/library/functions.html#str]) – the main target for this Linux Distribution. It’s common
for some architectures to ship with packages for
previous and still compatible architectures, such as it’s
the case with Intel/AMD 64 bit architecture that support
32 bit code. In cases like this, this should be set to
the 64 bit architecture name.

	
class avocado.utils.distro.Probe

	Bases: object [http://docs.python.org/library/functions.html#object]

Probes the machine and does it best to confirm it’s the right distro

	
CHECK_FILE = None

	Points to a file that can determine if this machine is running a given
Linux Distribution. This servers a first check that enables the extra
checks to carry on.

	
CHECK_FILE_CONTAINS = None

	Sets the content that should be checked on the file pointed to by
CHECK_FILE_EXISTS. Leave it set to None (its default)
to check only if the file exists, and not check its contents

	
CHECK_FILE_DISTRO_NAME = None

	The name of the Linux Distribution to be returned if the file defined
by CHECK_FILE_EXISTS exist.

	
CHECK_VERSION_REGEX = None

	A regular expression that will be run on the file pointed to by
CHECK_FILE_EXISTS

	
check_name_for_file()

	Checks if this class will look for a file and return a distro

The conditions that must be true include the file that identifies the
distro file being set (CHECK_FILE) and the name of the
distro to be returned (CHECK_FILE_DISTRO_NAME)

	
check_name_for_file_contains()

	Checks if this class will look for text on a file and return a distro

The conditions that must be true include the file that identifies the
distro file being set (CHECK_FILE), the text to look for
inside the distro file (CHECK_FILE_CONTAINS) and the name
of the distro to be returned (CHECK_FILE_DISTRO_NAME)

	
check_release()

	Checks if this has the conditions met to look for the release number

	
check_version()

	Checks if this class will look for a regex in file and return a distro

	
get_distro()

	Returns the LinuxDistro this probe detected

	
name_for_file()

	Get the distro name if the CHECK_FILE is set and exists

	
name_for_file_contains()

	Get the distro if the CHECK_FILE is set and has content

	
release()

	Returns the release of the distro

	
version()

	Returns the version of the distro

	
avocado.utils.distro.register_probe(probe_class)

	Register a probe to be run during autodetection

	
avocado.utils.distro.detect()

	Attempts to detect the Linux Distribution running on this machine

	Returns:	the detected LinuxDistro or UNKNOWN_DISTRO

	Return type:	LinuxDistro

avocado.utils.download module

Methods to download URLs and regular files.

	
avocado.utils.download.get_file(src, dst, permissions=None, hash_expected=None, hash_algorithm='md5', download_retries=1)

	Gets a file from a source location, optionally using caching.

If no hash_expected is provided, simply download the file. Else,
keep trying to download the file until download_failures exceeds
download_retries or the hashes match.

If the hashes match, return dst. If download_failures exceeds
download_retries, raise an EnvironmentError.

	Parameters:	
	src – source path or URL. May be local or a remote file.

	dst – destination path.

	permissions – (optional) set access permissions.

	hash_expected – Hash string that we expect the file downloaded to
have.

	hash_algorithm – Algorithm used to calculate the hash string
(md5, sha1).

	download_retries – Number of times we are going to retry a failed
download.

	Raise:	EnvironmentError.

	Returns:	destination path.

	
avocado.utils.download.url_download(url, filename, data=None, timeout=300)

	Retrieve a file from given url.

	Parameters:	
	url – source URL.

	filename – destination path.

	data – (optional) data to post.

	timeout – (optional) default timeout in seconds.

	Returns:	None.

	
avocado.utils.download.url_download_interactive(url, output_file, title='', chunk_size=102400)

	Interactively downloads a given file url to a given output file.

	Parameters:	
	url (string [http://docs.python.org/library/string.html#module-string]) – URL for the file to be download

	output_file (string [http://docs.python.org/library/string.html#module-string]) – file name or absolute path on which to save the file to

	title (string [http://docs.python.org/library/string.html#module-string]) – optional title to go along the progress bar

	chunk_size (integer) – amount of data to read at a time

	
avocado.utils.download.url_open(url, data=None, timeout=5)

	Wrapper to urllib2.urlopen() [http://docs.python.org/library/urllib2.html#urllib2.urlopen] with timeout addition.

	Parameters:	
	url – URL to open.

	data – (optional) data to post.

	timeout – (optional) default timeout in seconds.

	Returns:	file-like object.

	Raises:	URLError.

avocado.utils.filelock module

Utility for individual file access control implemented
via PID lock files.

	
exception avocado.utils.filelock.AlreadyLocked

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

	
class avocado.utils.filelock.FileLock(filename, timeout=0)

	Bases: object [http://docs.python.org/library/functions.html#object]

Creates an exclusive advisory lock for a file.
All processes should use and honor the advisory
locking scheme, but uncooperative processes are free to
ignore the lock and access the file in any way they choose.

	
exception avocado.utils.filelock.LockFailed

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

avocado.utils.gdb module

Module that provides communication with GDB via its GDB/MI interpreter

	
class avocado.utils.gdb.GDB(path='/usr/bin/gdb', *extra_args)

	Bases: object [http://docs.python.org/library/functions.html#object]

Wraps a GDB subprocess for easier manipulation

	
DEFAULT_BREAK = 'main'

	

	
REQUIRED_ARGS = ['--interpreter=mi', '--quiet']

	

	
cli_cmd(command)

	Sends a cli command encoded as an MI command

	Parameters:	command (str [http://docs.python.org/library/functions.html#str]) – a regular GDB cli command

	Returns:	a CommandResult instance

	Return type:	CommandResult

	
cmd(command)

	Sends a command and parses all lines until prompt is received

	Parameters:	command (str [http://docs.python.org/library/functions.html#str]) – the GDB command, hopefully in MI language

	Returns:	a CommandResult instance

	Return type:	CommandResult

	
cmd_exists(command)

	Checks if a given command exists

	Parameters:	command (str [http://docs.python.org/library/functions.html#str]) – a GDB MI command, including the dash (-) prefix

	Returns:	either True or False

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

	
connect(port)

	Connects to a remote debugger (a gdbserver) at the given TCP port

This uses the “extended-remote” target type only

	Parameters:	port (int [http://docs.python.org/library/functions.html#int]) – the TCP port number

	Returns:	a CommandResult instance

	Return type:	CommandResult

	
del_break(number)

	Deletes a breakpoint by its number

	Parameters:	number (int [http://docs.python.org/library/functions.html#int]) – the breakpoint number

	Returns:	a CommandResult instance

	Return type:	CommandResult

	
disconnect()

	Disconnects from a remote debugger

	Returns:	a CommandResult instance

	Return type:	CommandResult

	
exit()

	Exits the GDB application gracefully

	Returns:	the result of subprocess.POpen.wait(), that is, a
subprocess.POpen.returncode

	Return type:	int or None

	
read_gdb_response(timeout=0.01, max_tries=100)

	Read raw responses from GDB

	Parameters:	
	timeout (float [http://docs.python.org/library/functions.html#float]) – the amount of time to way between read attempts

	max_tries (int [http://docs.python.org/library/functions.html#int]) – the maximum number of cycles to try to read until
a response is obtained

	Returns:	a string containing a raw response from GDB

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
read_until_break(max_lines=100)

	Read lines from GDB until a break condition is reached

	Parameters:	max_lines (int [http://docs.python.org/library/functions.html#int]) – the maximum number of lines to read

	Returns:	a list of messages read

	Return type:	list of str

	
run(args=[])

	Runs the application inside the debugger

	Parameters:	args (builtin.list) – the arguments to be passed to the binary as command line
arguments

	Returns:	a CommandResult instance

	Return type:	CommandResult

	
send_gdb_command(command)

	Send a raw command to the GNU debugger input

	Parameters:	command (str [http://docs.python.org/library/functions.html#str]) – the GDB command, hopefully in MI language

	Returns:	None

	
set_break(location, ignore_error=False)

	Sets a new breakpoint on the binary currently being debugged

	Parameters:	location (str [http://docs.python.org/library/functions.html#str]) – a breakpoint location expression as accepted by GDB

	Returns:	a CommandResult instance

	Return type:	CommandResult

	
set_file(path)

	Sets the file that will be executed

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – the path of the binary that will be executed

	Returns:	a CommandResult instance

	Return type:	CommandResult

	
class avocado.utils.gdb.GDBServer(path='/usr/bin/gdbserver', port=None, wait_until_running=True, *extra_args)

	Bases: object [http://docs.python.org/library/functions.html#object]

Wraps a gdbserver instance

Initializes a new gdbserver instance

	Parameters:	
	path (str [http://docs.python.org/library/functions.html#str]) – location of the gdbserver binary

	port (int [http://docs.python.org/library/functions.html#int]) – tcp port number to listen on for incoming connections

	wait_until_running (bool [http://docs.python.org/library/functions.html#bool]) – wait until the gdbserver is running and
accepting connections. It may take a little
after the process is started and it is
actually bound to the allocated port

	extra_args – optional extra arguments to be passed to gdbserver

	
INIT_TIMEOUT = 2.0

	The time to optionally wait for the server to initialize itself and be
ready to accept new connections

	
PORT_RANGE = (20000, 20999)

	The range from which a port to GDB server will try to be allocated from

	
REQUIRED_ARGS = ['--multi']

	The default arguments used when starting the GDB server process

	
exit(force=True)

	Quits the gdb_server process

Most correct way of quitting the GDB server is by sending it a command.
If no GDB client is connected, then we can try to connect to it and
send a quit command. If this is not possible, we send it a signal and
wait for it to finish.

	Parameters:	force (bool [http://docs.python.org/library/functions.html#bool]) – if a forced exit (sending SIGTERM) should be attempted

	Returns:	None

	
class avocado.utils.gdb.GDBRemote(host, port, no_ack_mode=True, extended_mode=True)

	Bases: object [http://docs.python.org/library/functions.html#object]

Initializes a new GDBRemote object.

A GDBRemote acts like a client that speaks the GDB remote protocol,
documented at:

https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html

Caveat: we currently do not support communicating with devices, only
with TCP sockets. This limitation is basically due to the lack of
use cases that justify an implementation, but not due to any technical
shortcoming.

	Parameters:	
	host (str [http://docs.python.org/library/functions.html#str]) – the IP address or host name

	port (int [http://docs.python.org/library/functions.html#int]) – the port number where the the remote GDB is listening on

	no_ack_mode (bool [http://docs.python.org/library/functions.html#bool]) – if the packet transmission confirmation mode should
be disabled

	extended_mode – if the remote extended mode should be enabled

	
cmd(command_data, expected_response=None)

	Sends a command data to a remote gdb server

Limitations: the current version does not deal with retransmissions.

	Parameters:	
	command_data (str [http://docs.python.org/library/functions.html#str]) – the remote command to send the the remote stub

	expected_response (str [http://docs.python.org/library/functions.html#str]) – the (optional) response that is expected
as a response for the command sent

	Raises:	RetransmissionRequestedError, UnexpectedResponseError

	Returns:	raw data read from from the remote server

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
connect()

	Connects to the remote target and initializes the chosen modes

	
set_extended_mode()

	Enable extended mode. In extended mode, the remote server is made
persistent. The ‘R’ packet is used to restart the program being
debugged. Original documentation at:

https://sourceware.org/gdb/current/onlinedocs/gdb/Packets.html#extended-mode

	
start_no_ack_mode()

	Request that the remote stub disable the normal +/- protocol
acknowledgments. Original documentation at:

https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html#QStartNoAckMode

avocado.utils.genio module

Avocado generic IO related functions.

	
avocado.utils.genio.ask(question, auto=False)

	Prompt the user with a (y/n) question.

	Parameters:	
	question (str [http://docs.python.org/library/functions.html#str]) – Question to be asked

	auto (bool [http://docs.python.org/library/functions.html#bool]) – Whether to return “y” instead of asking the question

	Returns:	User answer

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
avocado.utils.genio.close_log_file(filename)

	

	
avocado.utils.genio.log_line(filename, line)

	Write a line to a file.

	Parameters:	
	filename – Path of file to write to, either absolute or relative to
the dir set by set_log_file_dir().

	line – Line to write.

	
avocado.utils.genio.read_all_lines(filename)

	Return all lines of a given file

This utility method returns an empty list in any error scenario,
that is, it doesn’t attempt to identify error paths and raise
appropriate exceptions. It does exactly the opposite to that.

This should be used when it’s fine or desirable to have an empty
set of lines if a file is missing or is unreadable.

	Parameters:	filename (str [http://docs.python.org/library/functions.html#str]) – Path to the file.

	Returns:	all lines of the file as list

	Return type:	builtin.list

	
avocado.utils.genio.read_file(filename)

	Read the entire contents of file.

	Parameters:	filename (str [http://docs.python.org/library/functions.html#str]) – Path to the file.

	Returns:	File contents

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
avocado.utils.genio.read_one_line(filename)

	Read the first line of filename.

	Parameters:	filename (str [http://docs.python.org/library/functions.html#str]) – Path to the file.

	Returns:	First line contents

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
avocado.utils.genio.set_log_file_dir(directory)

	Set the base directory for log files created by log_line().

	Parameters:	dir – Directory for log files.

	
avocado.utils.genio.write_file(filename, data)

	Write data to a file.

	Parameters:	
	filename (str [http://docs.python.org/library/functions.html#str]) – Path to the file.

	line (str [http://docs.python.org/library/functions.html#str]) – Line to be written.

	
avocado.utils.genio.write_one_line(filename, line)

	Write one line of text to filename.

	Parameters:	
	filename (str [http://docs.python.org/library/functions.html#str]) – Path to the file.

	line (str [http://docs.python.org/library/functions.html#str]) – Line to be written.

avocado.utils.git module

APIs to download/update git repositories from inside python scripts.

	
class avocado.utils.git.GitRepoHelper(uri, branch='master', lbranch=None, commit=None, destination_dir=None, base_uri=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Helps to deal with git repos, mostly fetching content from a repo

Instantiates a new GitRepoHelper

	Parameters:	
	uri (string [http://docs.python.org/library/string.html#module-string]) – git repository url

	branch (string [http://docs.python.org/library/string.html#module-string]) – git remote branch

	lbranch (string [http://docs.python.org/library/string.html#module-string]) – git local branch name, if different from remote

	commit (string [http://docs.python.org/library/string.html#module-string]) – specific commit to download

	destination_dir (string [http://docs.python.org/library/string.html#module-string]) – path of a dir where to save downloaded code

	base_uri (string [http://docs.python.org/library/string.html#module-string]) – a closer, usually local, git repository url from where
to fetch content first from

	
checkout(branch=None, commit=None)

	Performs a git checkout for a given branch and start point (commit)

	Parameters:	
	branch – Remote branch name.

	commit – Specific commit hash.

	
execute()

	Performs all steps necessary to initialize and download a git repo.

This includes the init, fetch and checkout steps in one single
utility method.

	
fetch(uri)

	Performs a git fetch from the remote repo

	
get_top_commit()

	Returns the topmost commit id for the current branch.

	Returns:	Commit id.

	
get_top_tag()

	Returns the topmost tag for the current branch.

	Returns:	Tag.

	
git_cmd(cmd, ignore_status=False)

	Wraps git commands.

	Parameters:	
	cmd – Command to be executed.

	ignore_status – Whether we should suppress error.CmdError
exceptions if the command did return exit code !=0 (True), or
not suppress them (False).

	
init()

	Initializes a directory for receiving a verbatim copy of git repo

This creates a directory if necessary, and either resets or inits
the repo

	
avocado.utils.git.get_repo(uri, branch='master', lbranch=None, commit=None, destination_dir=None, base_uri=None)

	Utility function that retrieves a given git code repository.

	Parameters:	
	uri (string [http://docs.python.org/library/string.html#module-string]) – git repository url

	branch (string [http://docs.python.org/library/string.html#module-string]) – git remote branch

	lbranch (string [http://docs.python.org/library/string.html#module-string]) – git local branch name, if different from remote

	commit (string [http://docs.python.org/library/string.html#module-string]) – specific commit to download

	destination_dir (string [http://docs.python.org/library/string.html#module-string]) – path of a dir where to save downloaded code

	base_uri (string [http://docs.python.org/library/string.html#module-string]) – a closer, usually local, git repository url from where to
fetch content first from

avocado.utils.iso9660 module

Basic ISO9660 file-system support.

This code does not attempt (so far) to implement code that knows about
ISO9660 internal structure. Instead, it uses commonly available support
either in userspace tools or on the Linux kernel itself (via mount).

	
avocado.utils.iso9660.iso9660(path)

	Checks the available tools on a system and chooses class accordingly

This is a convenience function, that will pick the first available
iso9660 capable tool.

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – path to an iso9660 image file

	Returns:	an instance of any iso9660 capable tool

	Return type:	Iso9660IsoInfo, Iso9660IsoRead,
Iso9660Mount or None

	
class avocado.utils.iso9660.Iso9660IsoInfo(path)

	Bases: avocado.utils.iso9660.MixInMntDirMount, avocado.utils.iso9660.BaseIso9660

Represents a ISO9660 filesystem

This implementation is based on the cdrkit’s isoinfo tool

	
read(path)

	

	
class avocado.utils.iso9660.Iso9660IsoRead(path)

	Bases: avocado.utils.iso9660.MixInMntDirMount, avocado.utils.iso9660.BaseIso9660

Represents a ISO9660 filesystem

This implementation is based on the libcdio’s iso-read tool

	
close()

	

	
copy(src, dst)

	

	
read(path)

	

	
class avocado.utils.iso9660.Iso9660Mount(path)

	Bases: avocado.utils.iso9660.BaseIso9660

Represents a mounted ISO9660 filesystem.

initializes a mounted ISO9660 filesystem

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – path to the ISO9660 file

	
close()

	Perform umount operation on the temporary dir

	Return type:	None [http://docs.python.org/library/constants.html#None]

	
copy(src, dst)

	

	Parameters:	
	src (str [http://docs.python.org/library/functions.html#str]) – source

	dst (str [http://docs.python.org/library/functions.html#str]) – destination

	Return type:	None [http://docs.python.org/library/constants.html#None]

	
mnt_dir

	

	
read(path)

	Read data from path

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – path to read data

	Returns:	data content

	Return type:	str [http://docs.python.org/library/functions.html#str]

avocado.utils.kernel module

	
class avocado.utils.kernel.KernelBuild(version, config_path=None, work_dir=None, data_dirs=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Build the Linux Kernel from official tarballs.

Creates an instance of KernelBuild.

	Parameters:	
	version – kernel version (“3.19.8”).

	config_path – path to config file.

	work_dir – work directory.

	data_dirs – list of directories to keep the downloaded kernel

	Returns:	None.

	
SOURCE = 'linux-{version}.tar.gz'

	

	
URL = 'https://www.kernel.org/pub/linux/kernel/v3.x/'

	

	
build()

	Build kernel from source.

	
configure()

	Configure/prepare kernel source to build.

	
download()

	Download kernel source.

	
uncompress()

	Uncompress kernel source.

	
avocado.utils.kernel.check_version(version)

	This utility function compares the current kernel version with
the version parameter and gives assertion error if the version
parameter is greater.

	Parameters:	version (string [http://docs.python.org/library/string.html#module-string]) – version to be compared with current kernel version

avocado.utils.linux_modules module

Linux kernel modules APIs

	
avocado.utils.linux_modules.BUILTIN = 2

	Config built-in to kernel (=y)

	
avocado.utils.linux_modules.MODULE = 1

	Config compiled as loadable module (=m)

	
avocado.utils.linux_modules.NOT_SET = 0

	Config commented out or not set

	
avocado.utils.linux_modules.check_kernel_config(config_name)

	Reports the configuration of $config_name of the current kernel

	Parameters:	config_name (str [http://docs.python.org/library/functions.html#str]) – Name of kernel config to search

	Returns:	Config status in running kernel (NOT_SET, BUILTIN, MODULE)

	Return type:	int [http://docs.python.org/library/functions.html#int]

	
avocado.utils.linux_modules.get_loaded_modules()

	

	
avocado.utils.linux_modules.get_submodules(module_name)

	Get all submodules of the module.

	Parameters:	module_name (str [http://docs.python.org/library/functions.html#str]) – Name of module to search for

	Returns:	List of the submodules

	Return type:	builtin.list

	
avocado.utils.linux_modules.load_module(module_name)

	

	
avocado.utils.linux_modules.loaded_module_info(module_name)

	Get loaded module details: Size and Submodules.

	Parameters:	module_name (str [http://docs.python.org/library/functions.html#str]) – Name of module to search for

	Returns:	Dictionary of module info, name, size, submodules if present

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
avocado.utils.linux_modules.module_is_loaded(module_name)

	Is module loaded

	Parameters:	module_name (str [http://docs.python.org/library/functions.html#str]) – Name of module to search for

	Returns:	True is module is loaded

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

	
avocado.utils.linux_modules.parse_lsmod_for_module(l_raw, module_name, escape=True)

	Use a regexp to parse raw lsmod output and get module information
:param l_raw: raw output of lsmod
:type l_raw: str
:param module_name: Name of module to search for
:type module_name: str
:param escape: Escape regexp tokens in module_name, default True
:type escape: bool
:return: Dictionary of module info, name, size, submodules if present
:rtype: dict

	
avocado.utils.linux_modules.unload_module(module_name)

	Removes a module. Handles dependencies. If even then it’s not possible
to remove one of the modules, it will throw an error.CmdError exception.

	Parameters:	module_name (str [http://docs.python.org/library/functions.html#str]) – Name of the module we want to remove.

avocado.utils.lv_utils module

	
exception avocado.utils.lv_utils.LVException

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

Base Exception Class for all exceptions

	
avocado.utils.lv_utils.get_diskspace(disk)

	Get the entire disk space of a given disk

	Parameters:	disk – Name of the disk to find free space

	Returns:	size in bytes

	
avocado.utils.lv_utils.lv_check(vg_name, lv_name)

	Check whether provided Logical volume exists.

	Parameters:	
	vg_name – Name of the volume group

	lv_name – Name of the logical volume

	
avocado.utils.lv_utils.lv_create(vg_name, lv_name, lv_size, force_flag=True)

	Create a Logical volume in a volume group.
The volume group must already exist.

	Parameters:	
	vg_name – Name of the volume group

	lv_name – Name of the logical volume

	lv_size – Size for the logical volume to be created

	
avocado.utils.lv_utils.lv_list()

	List available group volumes.

:return list available logical volumes

	
avocado.utils.lv_utils.lv_mount(vg_name, lv_name, mount_loc, create_filesystem='')

	Mount a Logical volume to a mount location.

	Parameters:	
	vg_name – Name of volume group

	lv_name – Name of the logical volume

	create_filesystem – Can be one of ext2, ext3, ext4, vfat or empty
if the filesystem was already created and the
mkfs process is skipped

	Mount_loc:	Location to mount the logical volume

	
avocado.utils.lv_utils.lv_reactivate(vg_name, lv_name, timeout=10)

	In case of unclean shutdowns some of the lvs is still active and merging
is postponed. Use this function to attempt to deactivate and reactivate
all of them to cause the merge to happen.

	Parameters:	
	vg_name – Name of volume group

	lv_name – Name of the logical volume

	timeout – Timeout between operations

	
avocado.utils.lv_utils.lv_remove(vg_name, lv_name)

	Remove a logical volume.

	Parameters:	
	vg_name – Name of the volume group

	lv_name – Name of the logical volume

	
avocado.utils.lv_utils.lv_revert(vg_name, lv_name, lv_snapshot_name)

	Revert the origin to a snapshot.

	Parameters:	
	vg_name – An existing volume group

	lv_name – An existing logical volume

	lv_snapshot_name – Name of the snapshot be to reverted

	
avocado.utils.lv_utils.lv_revert_with_snapshot(vg_name, lv_name, lv_snapshot_name, lv_snapshot_size)

	Perform Logical volume merge with snapshot and take a new snapshot.

	Parameters:	
	vg_name – Name of volume group in which lv has to be reverted

	lv_name – Name of the logical volume to be reverted

	lv_snapshot_name – Name of the snapshot be to reverted

	lv_snapshot_size – Size of the snapshot

	
avocado.utils.lv_utils.lv_take_snapshot(vg_name, lv_name, lv_snapshot_name, lv_snapshot_size)

	Take a snapshot of the original Logical volume.

	Parameters:	
	vg_name – An existing volume group

	lv_name – An existing logical volume

	lv_snapshot_name – Name of the snapshot be to created

	lv_snapshot_size – Size of the snapshot

	
avocado.utils.lv_utils.lv_umount(vg_name, lv_name)

	Unmount a Logical volume from a mount location.

	Parameters:	
	vg_name – Name of volume group

	lv_name – Name of the logical volume

	
avocado.utils.lv_utils.thin_lv_create(vg_name, thinpool_name='lvthinpool', thinpool_size='1.5G', thinlv_name='lvthin', thinlv_size='1G')

	Create a thin volume from given volume group.

	Parameters:	
	vg_name – An exist volume group

	thinpool_name – The name of thin pool

	thinpool_size – The size of thin pool to be created

	thinlv_name – The name of thin volume

	thinlv_size – The size of thin volume

	
avocado.utils.lv_utils.vg_check(vg_name)

	Check whether provided volume group exists.

	Parameters:	vg_name – Name of the volume group.

	
avocado.utils.lv_utils.vg_create(vg_name, pv_list, force=False)

	Create a volume group by using the block special devices

	Parameters:	
	vg_name – Name of the volume group

	pv_list – List of physical volumes

	force – Create volume group forcefully

	
avocado.utils.lv_utils.vg_list()

	List available volume groups.

:return List of volume groups.

	
avocado.utils.lv_utils.vg_ramdisk(disk, vg_name, ramdisk_vg_size, ramdisk_basedir, ramdisk_sparse_filename)

	Create vg on top of ram memory to speed up lv performance.
When disk is specified size of the physical volume is taken from
existing disk space.

	Parameters:	
	disk – Name of the disk in which volume groups are created.

	vg_name – Name of the volume group.

	ramdisk_vg_size – Size of the ramdisk virtual group (MB).

	ramdisk_basedir – Base directory for the ramdisk sparse file.

	ramdisk_sparse_filename – Name of the ramdisk sparse file.

	Returns:	ramdisk_filename, vg_ramdisk_dir, vg_name, loop_device

	Raises:	LVException – On failure

Sample ramdisk params:
- ramdisk_vg_size = “40000”
- ramdisk_basedir = “/tmp”
- ramdisk_sparse_filename = “virtual_hdd”

Sample general params:
- vg_name=’autotest_vg’,
- lv_name=’autotest_lv’,
- lv_size=‘1G’,
- lv_snapshot_name=’autotest_sn’,
- lv_snapshot_size=‘1G’
The ramdisk volume group size is in MB.

	
avocado.utils.lv_utils.vg_ramdisk_cleanup(ramdisk_filename=None, vg_ramdisk_dir=None, vg_name=None, loop_device=None)

	Inline cleanup function in case of test error.

It detects whether the components were initialized and if so it tries
to remove them. In case of failure it raises summary exception.

	Parameters:	
	ramdisk_filename – Name of the ramdisk sparse file.

	vg_ramdisk_dir – Location of the ramdisk file

	Vg_name:	Name of the volume group

	Loop_device:	Name of the disk or loop device

	Raises:	LVException – In case it fail to clean things detected in system

	
avocado.utils.lv_utils.vg_remove(vg_name)

	Remove a volume group.

	Parameters:	vg_name – Name of the volume group

avocado.utils.memory module

	
avocado.utils.memory.drop_caches()

	Writes back all dirty pages to disk and clears all the caches.

	
avocado.utils.memory.freememtotal()

	Read MemFree from meminfo.

	
avocado.utils.memory.get_buddy_info(chunk_sizes, nodes='all', zones='all')

	Get the fragement status of the host.

It uses the same method to get the page size in buddyinfo. The expression
to evaluate it is:

2^chunk_size * page_size

The chunk_sizes can be string make up by all orders that you want to check
split with blank or a mathematical expression with >, < or =.

	For example:

	
	The input of chunk_size could be: 0 2 4, and the return will be
{'0': 3, '2': 286, '4': 687}

	If you are using expression: >=9 the return will be
{'9': 63, '10': 225}

	Parameters:	
	chunk_size (string [http://docs.python.org/library/string.html#module-string]) – The order number shows in buddyinfo. This is not
the real page size.

	nodes (string [http://docs.python.org/library/string.html#module-string]) – The numa node that you want to check. Default value is all

	zones (string [http://docs.python.org/library/string.html#module-string]) – The memory zone that you want to check. Default value is all

	Returns:	A dict using the chunk_size as the keys

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
avocado.utils.memory.get_huge_page_size()

	Get size of the huge pages for this system.

	Returns:	Huge pages size (KB).

	
avocado.utils.memory.get_num_huge_pages()

	Get number of huge pages for this system.

	Returns:	Number of huge pages.

	
avocado.utils.memory.memtotal()

	Read Memtotal from meminfo.

	
avocado.utils.memory.node_size()

	Return node size.

	Returns:	Node size.

	
avocado.utils.memory.numa_nodes()

	Get a list of NUMA nodes present on the system.

	Returns:	List with nodes.

	
avocado.utils.memory.read_from_meminfo(key)

	Retrieve key from meminfo.

	Parameters:	key – Key name, such as MemTotal.

	
avocado.utils.memory.read_from_numa_maps(pid, key)

	Get the process numa related info from numa_maps. This function
only use to get the numbers like anon=1.

	Parameters:	
	pid (String) – Process id

	key (String) – The item you want to check from numa_maps

	Returns:	A dict using the address as the keys

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
avocado.utils.memory.read_from_smaps(pid, key)

	Get specific item value from the smaps of a process include all sections.

	Parameters:	
	pid (String) – Process id

	key (String) – The item you want to check from smaps

	Returns:	The value of the item in kb

	Return type:	int [http://docs.python.org/library/functions.html#int]

	
avocado.utils.memory.read_from_vmstat(key)

	Get specific item value from vmstat

	Parameters:	key (String) – The item you want to check from vmstat

	Returns:	The value of the item

	Return type:	int [http://docs.python.org/library/functions.html#int]

	
avocado.utils.memory.rounded_memtotal()

	Get memtotal, properly rounded.

	Returns:	Total memory, KB.

	
avocado.utils.memory.set_num_huge_pages(num)

	Set number of huge pages.

	Parameters:	num – Target number of huge pages.

avocado.utils.network module

Module with network related utility functions

	
avocado.utils.network.find_free_port(start_port, end_port, address='localhost')

	Return a host free port in the range [start_port, end_port].

	Parameters:	
	start_port – First port that will be checked.

	end_port – Port immediately after the last one that will be checked.

	
avocado.utils.network.find_free_ports(start_port, end_port, count, address='localhost')

	Return count of host free ports in the range [start_port, end_port].

	Parameters:	
	count – Initial number of ports known to be free in the range.

	start_port – First port that will be checked.

	end_port – Port immediately after the last one that will be checked.

	
avocado.utils.network.is_port_free(port, address)

	Return True if the given port is available for use.

	Parameters:	port – Port number

avocado.utils.output module

Utility functions for user friendly display of information.

	
class avocado.utils.output.ProgressBar(minimum=0, maximum=100, width=75, title='')

	Bases: object [http://docs.python.org/library/functions.html#object]

Displays interactively the progress of a given task

Inspired/adapted from https://gist.github.com/t0xicCode/3306295

Initializes a new progress bar

	Parameters:	
	minimum (integer) – minimum (initial) value on the progress bar

	maximum (integer) – maximum (final) value on the progress bar

	with – number of columns, that is screen width

	
append_amount(amount)

	Increments the current amount value.

	
draw()

	Prints the updated text to the screen.

	
update_amount(amount)

	Performs sanity checks and update the current amount.

	
update_percentage(percentage)

	Updates the progress bar to the new percentage.

	
avocado.utils.output.display_data_size(size)

	Display data size in human readable units (SI).

	Parameters:	size (int [http://docs.python.org/library/functions.html#int]) – Data size, in Bytes.

	Returns:	Human readable string with data size, using SI prefixes.

avocado.utils.partition module

Utility for handling partitions.

	
class avocado.utils.partition.MtabLock

	Bases: object [http://docs.python.org/library/functions.html#object]

	
mtab = None

	

	
class avocado.utils.partition.Partition(device, loop_size=0, mountpoint=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Class for handling partitions and filesystems

	Parameters:	
	device – The device in question (e.g.”/dev/hda2”). If device is a
file it will be mounted as loopback.

	loop_size – Size of loopback device (in MB). Defaults to 0.

	mountpoint – Where the partition to be mounted to.

	
get_mountpoint(filename=None)

	Find the mount point of this partition object.

	Parameters:	filename – where to look for the mounted partitions information
(default None which means it will search /proc/mounts and/or
/etc/mtab)

	Returns:	a string with the mount point of the partition or None if not
mounted

	
static list_mount_devices()

	Lists mounted file systems and swap on devices.

	
static list_mount_points()

	Lists the mount points.

	
mkfs(fstype=None, args='')

	Format a partition to filesystem type

	Parameters:	
	fstype – the filesystem type, such as “ext3”, “ext2”. Defaults
to previously set type or “ext2” if none has set.

	args – arguments to be passed to mkfs command.

	
mount(mountpoint=None, fstype=None, args='')

	Mount this partition to a mount point

	Parameters:	
	mountpoint – If you have not provided a mountpoint to partition
object or want to use a different one, you may specify it here.

	fstype – Filesystem type. If not provided partition object value
will be used.

	args – Arguments to be passed to “mount” command.

	
unmount(force=True)

	Umount this partition.

It’s easier said than done to umount a partition.
We need to lock the mtab file to make sure we don’t have any
locking problems if we are umounting in parallel.

When the unmount fails and force==True we unmount the partition
ungracefully.

	Returns:	1 on success, 2 on force umount success

	Raises:	PartitionError – On failure

	
exception avocado.utils.partition.PartitionError(partition, reason, details=None)

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

Generic PartitionError

avocado.utils.path module

Avocado path related functions.

	
exception avocado.utils.path.CmdNotFoundError(cmd, paths)

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

Indicates that the command was not found in the system after a search.

	Parameters:	
	cmd – String with the command.

	paths – List of paths where we looked after.

	
class avocado.utils.path.PathInspector(path)

	Bases: object [http://docs.python.org/library/functions.html#object]

	
get_first_line()

	

	
has_exec_permission()

	

	
is_empty()

	

	
is_python()

	

	
is_script(language=None)

	

	
avocado.utils.path.find_command(cmd, default=None)

	Try to find a command in the PATH, paranoid version.

	Parameters:	
	cmd – Command to be found.

	default – Command path to use as a fallback if not found
in the standard directories.

	Raise:	avocado.utils.path.CmdNotFoundError in case the
command was not found and no default was given.

	
avocado.utils.path.get_path(base_path, user_path)

	Translate a user specified path to a real path.
If user_path is relative, append it to base_path.
If user_path is absolute, return it as is.

	Parameters:	
	base_path – The base path of relative user specified paths.

	user_path – The user specified path.

	
avocado.utils.path.init_dir(*args)

	Wrapper around os.path.join that creates dirs based on the final path.

	Parameters:	args – List of dir arguments that will be os.path.joined.

	Returns:	directory.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
avocado.utils.path.usable_ro_dir(directory)

	Verify whether dir exists and we can access its contents.

If a usable RO is there, use it no questions asked. If not, let’s at
least try to create one.

	Parameters:	directory – Directory

	
avocado.utils.path.usable_rw_dir(directory)

	Verify whether we can use this dir (read/write).

Checks for appropriate permissions, and creates missing dirs as needed.

	Parameters:	directory – Directory

avocado.utils.process module

Functions dedicated to find and run external commands.

	
avocado.utils.process.CURRENT_WRAPPER = None

	The active wrapper utility script.

	
exception avocado.utils.process.CmdError(command=None, result=None, additional_text=None)

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

	
class avocado.utils.process.CmdResult(command='', stdout='', stderr='', exit_status=None, duration=0, pid=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Command execution result.

	Parameters:	
	command – String containing the command line itself

	exit_status – Integer exit code of the process

	stdout – String containing stdout of the process

	stderr – String containing stderr of the process

	duration – Elapsed wall clock time running the process

	pid – ID of the process

	
class avocado.utils.process.GDBSubProcess(cmd, verbose=True, allow_output_check='all', shell=False, env=None, sudo=False)

	Bases: object [http://docs.python.org/library/functions.html#object]

Runs a subprocess inside the GNU Debugger

Creates the subprocess object, stdout/err, reader threads and locks.

	Parameters:	
	cmd (str [http://docs.python.org/library/functions.html#str]) – Command line to run.

	verbose (bool [http://docs.python.org/library/functions.html#bool]) – Whether to log the command run and stdout/stderr.
Currently unused and provided for compatibility only.

	allow_output_check (str [http://docs.python.org/library/functions.html#str]) – Whether to log the command stream outputs
(stdout and stderr) in the test stream
files. Valid values: ‘stdout’, for
allowing only standard output, ‘stderr’,
to allow only standard error, ‘all’,
to allow both standard output and error
(default), and ‘none’, to allow
none to be recorded. Currently unused and
provided for compatibility only.

	sudo – This param will be ignored in this implementation,
since the GDB wrapping code does not have support to run
commands under sudo just yet.

	
create_and_wait_on_resume_fifo(path)

	Creates a FIFO file and waits until it’s written to

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – the path that the file will be created

	Returns:	first character that was written to the fifo

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
generate_core()

	

	
generate_gdb_connect_cmds()

	

	
generate_gdb_connect_sh()

	

	
handle_break_hit(response)

	

	
handle_fatal_signal(response)

	

	
run(timeout=None)

	

	
wait_for_exit()

	Waits until debugger receives a message about the binary exit

	
class avocado.utils.process.SubProcess(cmd, verbose=True, allow_output_check='all', shell=False, env=None, sudo=False)

	Bases: object [http://docs.python.org/library/functions.html#object]

Run a subprocess in the background, collecting stdout/stderr streams.

Creates the subprocess object, stdout/err, reader threads and locks.

	Parameters:	
	cmd (str [http://docs.python.org/library/functions.html#str]) – Command line to run.

	verbose (bool [http://docs.python.org/library/functions.html#bool]) – Whether to log the command run and stdout/stderr.

	allow_output_check (str [http://docs.python.org/library/functions.html#str]) – Whether to log the command stream outputs
(stdout and stderr) in the test stream
files. Valid values: ‘stdout’, for
allowing only standard output, ‘stderr’,
to allow only standard error, ‘all’,
to allow both standard output and error
(default), and ‘none’, to allow
none to be recorded.

	shell (bool [http://docs.python.org/library/functions.html#bool]) – Whether to run the subprocess in a subshell.

	env (dict [http://docs.python.org/library/stdtypes.html#dict]) – Use extra environment variables.

	sudo – Whether the command requires admin privileges to run,
so that sudo will be prepended to the command.
The assumption here is that the user running the command
has a sudo configuration such that a password won’t be
prompted. If that’s not the case, the command will
straight out fail.

	
get_pid()

	Reports PID of this process

	
get_stderr()

	Get the full stderr of the subprocess so far.

	Returns:	Standard error of the process.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
get_stdout()

	Get the full stdout of the subprocess so far.

	Returns:	Standard output of the process.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
kill()

	Send a signal.SIGKILL to the process.

	
poll()

	Call the subprocess poll() method, fill results if rc is not None.

	
run(timeout=None, sig=15)

	Start a process and wait for it to end, returning the result attr.

If the process was already started using .start(), this will simply
wait for it to end.

	Parameters:	
	timeout (float [http://docs.python.org/library/functions.html#float]) – Time (seconds) we’ll wait until the process is
finished. If it’s not, we’ll try to terminate it
and get a status.

	sig (int [http://docs.python.org/library/functions.html#int]) – Signal to send to the process in case it did not end after
the specified timeout.

	Returns:	The command result object.

	Return type:	A CmdResult instance.

	
send_signal(sig)

	Send the specified signal to the process.

	Parameters:	sig – Signal to send.

	
start()

	Start running the subprocess.

This method is particularly useful for background processes, since
you can start the subprocess and not block your test flow.

	Returns:	Subprocess PID.

	Return type:	int [http://docs.python.org/library/functions.html#int]

	
stop()

	Stop background subprocess.

Call this method to terminate the background subprocess and
wait for it results.

	
terminate()

	Send a signal.SIGTERM to the process.

	
wait()

	Call the subprocess poll() method, fill results if rc is not None.

	
avocado.utils.process.UNDEFINED_BEHAVIOR_EXCEPTION = None

	Exception to be raised when users of this API need to know that the
execution of a given process resulted in undefined behavior. One
concrete example when a user, in an interactive session, let the
inferior process exit before before avocado resumed the debugger
session. Since the information is unknown, and the behavior is
undefined, this situation will be flagged by an exception.

	
avocado.utils.process.WRAP_PROCESS = None

	The global wrapper.
If set, run every process under this wrapper.

	
avocado.utils.process.WRAP_PROCESS_NAMES_EXPR = []

	Set wrapper per program names.
A list of wrappers and program names.
Format: [(‘/path/to/wrapper.sh’, ‘progname’), ...]

	
class avocado.utils.process.WrapSubProcess(cmd, verbose=True, allow_output_check='all', shell=False, env=None, wrapper=None, sudo=False)

	Bases: avocado.utils.process.SubProcess

Wrap subprocess inside an utility program.

	
avocado.utils.process.binary_from_shell_cmd(cmd)

	Tries to find the first binary path from a simple shell-like command.

	Note:	It’s a naive implementation, but for commands like:
VAR=VAL binary -args || true gives the right result (binary)

	Parameters:	cmd – simple shell-like binary

	Returns:	first found binary from the cmd

	
avocado.utils.process.can_sudo()

	

	Returns:	True when sudo is available (or is root)

	
avocado.utils.process.get_children_pids(ppid)

	Get all PIDs of children/threads of parent ppid
param ppid: parent PID
return: list of PIDs of all children/threads of ppid

	
avocado.utils.process.get_sub_process_klass(cmd)

	Which sub process implementation should be used

Either the regular one, or the GNU Debugger version

	Parameters:	cmd – the command arguments, from where we extract the binary name

	
avocado.utils.process.kill_process_by_pattern(pattern)

	Send SIGTERM signal to a process with matched pattern.

	Parameters:	pattern – normally only matched against the process name

	
avocado.utils.process.kill_process_tree(pid, sig=9, send_sigcont=True)

	Signal a process and all of its children.

If the process does not exist – return.

	Parameters:	
	pid – The pid of the process to signal.

	sig – The signal to send to the processes.

	
avocado.utils.process.pid_exists(pid)

	Return True if a given PID exists.

	Parameters:	pid – Process ID number.

	
avocado.utils.process.process_in_ptree_is_defunct(ppid)

	Verify if any processes deriving from PPID are in the defunct state.

Attempt to verify if parent process and any children from PPID is defunct
(zombie) or not.

	Parameters:	ppid – The parent PID of the process to verify.

	
avocado.utils.process.run(cmd, timeout=None, verbose=True, ignore_status=False, allow_output_check='all', shell=False, env=None, sudo=False)

	Run a subprocess, returning a CmdResult object.

	Parameters:	
	cmd (str [http://docs.python.org/library/functions.html#str]) – Command line to run.

	timeout (float [http://docs.python.org/library/functions.html#float]) – Time limit in seconds before attempting to kill the
running process. This function will take a few seconds
longer than ‘timeout’ to complete if it has to kill the
process.

	verbose (bool [http://docs.python.org/library/functions.html#bool]) – Whether to log the command run and stdout/stderr.

	ignore_status (bool [http://docs.python.org/library/functions.html#bool]) – Whether to raise an exception when command returns
=! 0 (False), or not (True).

	allow_output_check (str [http://docs.python.org/library/functions.html#str]) – Whether to log the command stream outputs
(stdout and stderr) in the test stream
files. Valid values: ‘stdout’, for
allowing only standard output, ‘stderr’,
to allow only standard error, ‘all’,
to allow both standard output and error
(default), and ‘none’, to allow
none to be recorded.

	shell (bool [http://docs.python.org/library/functions.html#bool]) – Whether to run the command on a subshell

	env (dict [http://docs.python.org/library/stdtypes.html#dict]) – Use extra environment variables

	sudo – Whether the command requires admin privileges to run,
so that sudo will be prepended to the command.
The assumption here is that the user running the command
has a sudo configuration such that a password won’t be
prompted. If that’s not the case, the command will
straight out fail.

	Returns:	An CmdResult object.

	Raise:	CmdError, if ignore_status=False.

	
avocado.utils.process.safe_kill(pid, signal)

	Attempt to send a signal to a given process that may or may not exist.

	Parameters:	signal – Signal number.

	
avocado.utils.process.should_run_inside_gdb(cmd)

	Wether the given command should be run inside the GNU debugger

	Parameters:	cmd – the command arguments, from where we extract the binary name

	
avocado.utils.process.should_run_inside_wrapper(cmd)

	Wether the given command should be run inside the wrapper utility.

	Parameters:	cmd – the command arguments, from where we extract the binary name

	
avocado.utils.process.split_gdb_expr(expr)

	Splits a GDB expr into (binary_name, breakpoint_location)

Returns avocado.gdb.GDB.DEFAULT_BREAK as the default breakpoint
if one is not given.

	Parameters:	expr (str [http://docs.python.org/library/functions.html#str]) – an expression of the form <binary_name>[:<breakpoint>]

	Returns:	a (binary_name, breakpoint_location) tuple

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
avocado.utils.process.system(cmd, timeout=None, verbose=True, ignore_status=False, allow_output_check='all', shell=False, env=None, sudo=False)

	Run a subprocess, returning its exit code.

	Parameters:	
	cmd (str [http://docs.python.org/library/functions.html#str]) – Command line to run.

	timeout (float [http://docs.python.org/library/functions.html#float]) – Time limit in seconds before attempting to kill the
running process. This function will take a few seconds
longer than ‘timeout’ to complete if it has to kill the
process.

	verbose (bool [http://docs.python.org/library/functions.html#bool]) – Whether to log the command run and stdout/stderr.

	ignore_status (bool [http://docs.python.org/library/functions.html#bool]) – Whether to raise an exception when command returns
=! 0 (False), or not (True).

	allow_output_check (str [http://docs.python.org/library/functions.html#str]) – Whether to log the command stream outputs
(stdout and stderr) in the test stream
files. Valid values: ‘stdout’, for
allowing only standard output, ‘stderr’,
to allow only standard error, ‘all’,
to allow both standard output and error
(default), and ‘none’, to allow
none to be recorded.

	shell (bool [http://docs.python.org/library/functions.html#bool]) – Whether to run the command on a subshell

	env (dict [http://docs.python.org/library/stdtypes.html#dict]) – Use extra environment variables.

	sudo – Whether the command requires admin privileges to run,
so that sudo will be prepended to the command.
The assumption here is that the user running the command
has a sudo configuration such that a password won’t be
prompted. If that’s not the case, the command will
straight out fail.

	Returns:	Exit code.

	Return type:	int [http://docs.python.org/library/functions.html#int]

	Raise:	CmdError, if ignore_status=False.

	
avocado.utils.process.system_output(cmd, timeout=None, verbose=True, ignore_status=False, allow_output_check='all', shell=False, env=None, sudo=False)

	Run a subprocess, returning its output.

	Parameters:	
	cmd (str [http://docs.python.org/library/functions.html#str]) – Command line to run.

	timeout (float [http://docs.python.org/library/functions.html#float]) – Time limit in seconds before attempting to kill the
running process. This function will take a few seconds
longer than ‘timeout’ to complete if it has to kill the
process.

	verbose (bool [http://docs.python.org/library/functions.html#bool]) – Whether to log the command run and stdout/stderr.

	ignore_status – Whether to raise an exception when command returns
=! 0 (False), or not (True).

	allow_output_check (str [http://docs.python.org/library/functions.html#str]) – Whether to log the command stream outputs
(stdout and stderr) in the test stream
files. Valid values: ‘stdout’, for
allowing only standard output, ‘stderr’,
to allow only standard error, ‘all’,
to allow both standard output and error
(default), and ‘none’, to allow
none to be recorded.

	shell (bool [http://docs.python.org/library/functions.html#bool]) – Whether to run the command on a subshell

	env (dict [http://docs.python.org/library/stdtypes.html#dict]) – Use extra environment variables

	sudo – Whether the command requires admin privileges to run,
so that sudo will be prepended to the command.
The assumption here is that the user running the command
has a sudo configuration such that a password won’t be
prompted. If that’s not the case, the command will
straight out fail.

	Returns:	Command output.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	Raise:	CmdError, if ignore_status=False.

avocado.utils.runtime module

Module that contains runtime configuration

	
avocado.utils.runtime.CURRENT_JOB = None

	Sometimes it’s useful for the framework and API to know about the job that
is currently running, if one exists

	
avocado.utils.runtime.CURRENT_TEST = None

	Sometimes it’s useful for the framework and API to know about the test that
is currently running, if one exists

avocado.utils.script module

Module to handle scripts creation.

	
avocado.utils.script.DEFAULT_MODE = 509

	What is commonly known as “0775” or “u=rwx,g=rwx,o=rx”

	
class avocado.utils.script.Script(path, content, mode=509)

	Bases: object [http://docs.python.org/library/functions.html#object]

Class that represents a script.

Creates an instance of Script.

Note that when the instance inside a with statement, it will
automatically call save() and then remove() for you.

	Parameters:	
	path – the script file name.

	content – the script content.

	mode – set file mode, defaults what is commonly known as 0775.

	
remove()

	Remove script from the file system.

	Returns:	True if script has been removed, otherwise False.

	
save()

	Store script to file system.

	Returns:	True if script has been stored, otherwise False.

	
class avocado.utils.script.TemporaryScript(name, content, prefix='avocado_script', mode=509)

	Bases: avocado.utils.script.Script

Class that represents a temporary script.

Creates an instance of TemporaryScript.

Note that when the instance inside a with statement, it will
automatically call save() and then remove() for you.

When the instance object is garbage collected, it will automatically
call remove() for you.

	Parameters:	
	name – the script file name.

	content – the script content.

	prefix – prefix for the temporary directory name.

	mode – set file mode, default to 0775.

	
remove()

	

	
avocado.utils.script.make_script(path, content, mode=509)

	Creates a new script stored in the file system.

	Parameters:	
	path – the script file name.

	content – the script content.

	mode – set file mode, default to 0775.

	Returns:	the script path.

	
avocado.utils.script.make_temp_script(name, content, prefix='avocado_script', mode=509)

	Creates a new temporary script stored in the file system.

	Parameters:	
	path – the script file name.

	content – the script content.

	prefix – the directory prefix Default to ‘avocado_script’.

	mode – set file mode, default to 0775.

	Returns:	the script path.

avocado.utils.service module

	
avocado.utils.service.ServiceManager(run=<function run>)

	Detect which init program is being used, init or systemd and return a
class has methods to start/stop services.

Get the system service manager
>> service_manager = ServiceManager()

Stating service/unit “sshd”
>> service_manager.start(“sshd”)

Getting a list of available units
>> units = service_manager.list()

Disabling and stopping a list of services
>> services_to_disable = [‘ntpd’, ‘httpd’]

>> for s in services_to_disable:
>> service_manager.disable(s)
>> service_manager.stop(s)

	Returns:	SysVInitServiceManager or SystemdServiceManager

	Return type:	_GenericServiceManager

	
avocado.utils.service.SpecificServiceManager(service_name, run=<function run>)

	# Get the specific service manager for sshd
>>> sshd = SpecificServiceManager(“sshd”)
>>> sshd.start()
>>> sshd.stop()
>>> sshd.reload()
>>> sshd.restart()
>>> sshd.condrestart()
>>> sshd.status()
>>> sshd.enable()
>>> sshd.disable()
>>> sshd.is_enabled()

	Parameters:	service_name (str [http://docs.python.org/library/functions.html#str]) – systemd unit or init.d service to manager

	Returns:	SpecificServiceManager that has start/stop methods

	Return type:	_SpecificServiceManager

	
avocado.utils.service.convert_systemd_target_to_runlevel(target)

	Convert systemd target to runlevel.

	Parameters:	target (str [http://docs.python.org/library/functions.html#str]) – systemd target

	Returns:	sys_v runlevel

	Return type:	str [http://docs.python.org/library/functions.html#str]

	Raises:	ValueError – when systemd target is unknown

	
avocado.utils.service.convert_sysv_runlevel(level)

	Convert runlevel to systemd target.

	Parameters:	level (str or int) – sys_v runlevel

	Returns:	systemd target

	Return type:	str [http://docs.python.org/library/functions.html#str]

	Raises:	ValueError – when runlevel is unknown

	
avocado.utils.service.get_name_of_init(run=<function run>)

	Determine what executable is PID 1, aka init by checking /proc/1/exe
This init detection will only run once and cache the return value.

	Returns:	executable name for PID 1, aka init

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
avocado.utils.service.service_manager(run=<function run>)

	Detect which init program is being used, init or systemd and return a
class has methods to start/stop services.

Get the system service manager
>> service_manager = ServiceManager()

Stating service/unit “sshd”
>> service_manager.start(“sshd”)

Getting a list of available units
>> units = service_manager.list()

Disabling and stopping a list of services
>> services_to_disable = [‘ntpd’, ‘httpd’]

>> for s in services_to_disable:
>> service_manager.disable(s)
>> service_manager.stop(s)

	Returns:	SysVInitServiceManager or SystemdServiceManager

	Return type:	_GenericServiceManager

	
avocado.utils.service.specific_service_manager(service_name, run=<function run>)

	# Get the specific service manager for sshd
>>> sshd = SpecificServiceManager(“sshd”)
>>> sshd.start()
>>> sshd.stop()
>>> sshd.reload()
>>> sshd.restart()
>>> sshd.condrestart()
>>> sshd.status()
>>> sshd.enable()
>>> sshd.disable()
>>> sshd.is_enabled()

	Parameters:	service_name (str [http://docs.python.org/library/functions.html#str]) – systemd unit or init.d service to manager

	Returns:	SpecificServiceManager that has start/stop methods

	Return type:	_SpecificServiceManager

	
avocado.utils.service.sys_v_init_command_generator(command)

	Generate lists of command arguments for sys_v style inits.

	Parameters:	command (str [http://docs.python.org/library/functions.html#str]) – start,stop,restart, etc.

	Returns:	list of commands to pass to process.run or similar function

	Return type:	builtin.list

	
avocado.utils.service.sys_v_init_result_parser(command)

	Parse results from sys_v style commands.

command status: return true if service is running.
command is_enabled: return true if service is enabled.
command list: return a dict from service name to status.
command others: return true if operate success.

	Parameters:	command (str.) – command.

	Returns:	different from the command.

	
avocado.utils.service.systemd_command_generator(command)

	Generate list of command line argument strings for systemctl.

One argument per string for compatibility Popen

WARNING: If systemctl detects that it is running on a tty it will use color,
pipe to $PAGER, change column sizes and not truncate unit names.
Use –no-pager to suppress pager output, or set PAGER=cat in the
environment. You may need to take other steps to suppress color output.
See https://bugzilla.redhat.com/show_bug.cgi?id=713567

	Parameters:	command (str [http://docs.python.org/library/functions.html#str]) – start,stop,restart, etc.

	Returns:	List of command and arguments to pass to process.run or similar
functions

	Return type:	builtin.list

	
avocado.utils.service.systemd_result_parser(command)

	Parse results from systemd style commands.

command status: return true if service is running.
command is_enabled: return true if service is enabled.
command list: return a dict from service name to status.
command others: return true if operate success.

	Parameters:	command (str.) – command.

	Returns:	different from the command.

avocado.utils.software_manager module

Software package management library.

This is an abstraction layer on top of the existing distributions high level
package managers. It supports package operations useful for testing purposes,
and multiple high level package managers (here called backends). If you want
to make this lib to support your particular package manager/distro, please
implement the given backend class.

	author:	Higor Vieira Alves <halves@br.ibm.com>

	author:	Lucas Meneghel Rodrigues <lmr@redhat.com>

	author:	Ramon de Carvalho Valle <rcvalle@br.ibm.com>

	copyright:	IBM 2008-2009

	copyright:	Red Hat 2009-2014

	
class avocado.utils.software_manager.AptBackend

	Bases: avocado.utils.software_manager.DpkgBackend

Implements the apt backend for software manager.

Set of operations for the apt package manager, commonly found on Debian and
Debian based distributions, such as Ubuntu Linux.

Initializes the base command and the debian package repository.

	
add_repo(repo)

	Add an apt repository.

	Parameters:	repo – Repository string. Example:
‘deb http://archive.ubuntu.com/ubuntu/ maverick universe’

	
install(name)

	Installs package [name].

	Parameters:	name – Package name.

	
provides(path)

	Return a list of packages that provide [path].

	Parameters:	path – File path.

	
remove(name)

	Remove package [name].

	Parameters:	name – Package name.

	
remove_repo(repo)

	Remove an apt repository.

	Parameters:	repo – Repository string. Example:
‘deb http://archive.ubuntu.com/ubuntu/ maverick universe’

	
upgrade(name=None)

	Upgrade all packages of the system with eventual new versions.

Optionally, upgrade individual packages.

	Parameters:	name (str [http://docs.python.org/library/functions.html#str]) – optional parameter wildcard spec to upgrade

	
class avocado.utils.software_manager.BaseBackend

	Bases: object [http://docs.python.org/library/functions.html#object]

This class implements all common methods among backends.

	
install_what_provides(path)

	Installs package that provides [path].

	Parameters:	path – Path to file.

	
class avocado.utils.software_manager.DnfBackend

	Bases: avocado.utils.software_manager.YumBackend

Implements the dnf backend for software manager.

DNF is the successor to yum in recent Fedora.

Initializes the base command and the DNF package repository.

	
class avocado.utils.software_manager.DpkgBackend

	Bases: avocado.utils.software_manager.BaseBackend

This class implements operations executed with the dpkg package manager.

dpkg is a lower level package manager, used by higher level managers such
as apt and aptitude.

	
INSTALLED_OUTPUT = 'install ok installed'

	

	
PACKAGE_TYPE = 'deb'

	

	
check_installed(name)

	

	
list_all()

	List all packages available in the system.

	
list_files(package)

	List files installed by package [package].

	Parameters:	package – Package name.

	Returns:	List of paths installed by package.

	
class avocado.utils.software_manager.RpmBackend

	Bases: avocado.utils.software_manager.BaseBackend

This class implements operations executed with the rpm package manager.

rpm is a lower level package manager, used by higher level managers such
as yum and zypper.

	
PACKAGE_TYPE = 'rpm'

	

	
SOFTWARE_COMPONENT_QRY = 'rpm %{NAME} %{VERSION} %{RELEASE} %{SIGMD5} %{ARCH}'

	

	
check_installed(name, version=None, arch=None)

	Check if package [name] is installed.

	Parameters:	
	name – Package name.

	version – Package version.

	arch – Package architecture.

	
list_all(software_components=True)

	List all installed packages.

	Parameters:	software_components – log in a format suitable for the
SoftwareComponent schema

	
list_files(name)

	List files installed on the system by package [name].

	Parameters:	name – Package name.

	
class avocado.utils.software_manager.SoftwareManager

	Bases: object [http://docs.python.org/library/functions.html#object]

Package management abstraction layer.

It supports a set of common package operations for testing purposes, and it
uses the concept of a backend, a helper class that implements the set of
operations of a given package management tool.

Lazily instantiate the object

	
class avocado.utils.software_manager.SystemInspector

	Bases: object [http://docs.python.org/library/functions.html#object]

System inspector class.

This may grow up to include more complete reports of operating system and
machine properties.

Probe system, and save information for future reference.

	
get_package_management()

	Determine the supported package management systems present on the
system. If more than one package management system installed, try
to find the best supported system.

	
class avocado.utils.software_manager.YumBackend(cmd='yum')

	Bases: avocado.utils.software_manager.RpmBackend

Implements the yum backend for software manager.

Set of operations for the yum package manager, commonly found on Yellow Dog
Linux and Red Hat based distributions, such as Fedora and Red Hat
Enterprise Linux.

Initializes the base command and the yum package repository.

	
add_repo(url)

	Adds package repository located on [url].

	Parameters:	url – Universal Resource Locator of the repository.

	
install(name)

	Installs package [name]. Handles local installs.

	
provides(name)

	Returns a list of packages that provides a given capability.

	Parameters:	name – Capability name (eg, ‘foo’).

	
remove(name)

	Removes package [name].

	Parameters:	name – Package name (eg. ‘ipython’).

	
remove_repo(url)

	Removes package repository located on [url].

	Parameters:	url – Universal Resource Locator of the repository.

	
upgrade(name=None)

	Upgrade all available packages.

Optionally, upgrade individual packages.

	Parameters:	name (str [http://docs.python.org/library/functions.html#str]) – optional parameter wildcard spec to upgrade

	
class avocado.utils.software_manager.ZypperBackend

	Bases: avocado.utils.software_manager.RpmBackend

Implements the zypper backend for software manager.

Set of operations for the zypper package manager, found on SUSE Linux.

Initializes the base command and the yum package repository.

	
add_repo(url)

	Adds repository [url].

	Parameters:	url – URL for the package repository.

	
install(name)

	Installs package [name]. Handles local installs.

	Parameters:	name – Package Name.

	
provides(name)

	Searches for what provides a given file.

	Parameters:	name – File path.

	
remove(name)

	Removes package [name].

	
remove_repo(url)

	Removes repository [url].

	Parameters:	url – URL for the package repository.

	
upgrade(name=None)

	Upgrades all packages of the system.

Optionally, upgrade individual packages.

	Parameters:	name (str [http://docs.python.org/library/functions.html#str]) – Optional parameter wildcard spec to upgrade

	
avocado.utils.software_manager.install_distro_packages(distro_pkg_map, interactive=False)

	Installs packages for the currently running distribution

This utility function checks if the currently running distro is a
key in the distro_pkg_map dictionary, and if there is a list of packages
set as its value.

If these conditions match, the packages will be installed using the
software manager interface, thus the native packaging system if the
currently running distro.

	Parameters:	distro_pkg_map (dict [http://docs.python.org/library/stdtypes.html#dict]) – mapping of distro name, as returned by
utils.get_os_vendor(), to a list of package names

	Returns:	True if any packages were actually installed, False otherwise

avocado.utils.stacktrace module

Traceback standard module plus some additional APIs.

	
avocado.utils.stacktrace.analyze_unpickable_item(path_prefix, obj)

	Recursive method to obtain unpickable objects along with location

	Parameters:	
	path_prefix – Path to this object

	obj – The sub-object under introspection

	Returns:	[($path_to_the_object, $value), ...]

	
avocado.utils.stacktrace.log_exc_info(exc_info, logger='root')

	Log exception info to logger_name.

	Parameters:	
	exc_info – Exception info produced by sys.exc_info()

	logger – Name of the logger (defaults to root)

	
avocado.utils.stacktrace.log_message(message, logger='root')

	Log message to logger.

	Parameters:	
	message – Message

	logger – Name of the logger (defaults to root)

	
avocado.utils.stacktrace.prepare_exc_info(exc_info)

	Prepare traceback info.

	Parameters:	exc_info – Exception info produced by sys.exc_info()

	
avocado.utils.stacktrace.str_unpickable_object(obj)

	Return human readable string identifying the unpickable objects

	Parameters:	obj – The object for analysis

	Raises:	ValueError – In case the object is pickable

	
avocado.utils.stacktrace.tb_info(exc_info)

	Prepare traceback info.

	Parameters:	exc_info – Exception info produced by sys.exc_info()

avocado.utils.wait module

	
avocado.utils.wait.wait_for(func, timeout, first=0.0, step=1.0, text=None)

	Wait until func() evaluates to True.

If func() evaluates to True before timeout expires, return the
value of func(). Otherwise return None.

	Parameters:	
	timeout – Timeout in seconds

	first – Time to sleep before first attempt

	steps – Time to sleep between attempts in seconds

	text – Text to print while waiting, for debug purposes

Module contents

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Utilities APIs

avocado.utils.external package

Submodules

avocado.utils.external.gdbmi_parser module

	
avocado.utils.external.gdbmi_parser.parse(tokens)

	

	
avocado.utils.external.gdbmi_parser.process(input)

	

	
avocado.utils.external.gdbmi_parser.scan(input)

	

avocado.utils.external.spark module

	
class avocado.utils.external.spark.GenericASTBuilder(AST, start)

	Bases: avocado.utils.external.spark.GenericParser

	
buildASTNode(args, lhs)

	

	
nonterminal(type, args)

	

	
preprocess(rule, func)

	

	
terminal(token)

	

	
class avocado.utils.external.spark.GenericASTMatcher(start, ast)

	Bases: avocado.utils.external.spark.GenericParser

	
foundMatch(args, func)

	

	
match(ast=None)

	

	
match_r(node)

	

	
preprocess(rule, func)

	

	
resolve(list)

	

	
class avocado.utils.external.spark.GenericASTTraversal(ast)

	
	
default(node)

	

	
postorder(node=None)

	

	
preorder(node=None)

	

	
prune()

	

	
typestring(node)

	

	
exception avocado.utils.external.spark.GenericASTTraversalPruningException

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

	
class avocado.utils.external.spark.GenericParser(start)

	
	
add(set, item, i=None, predecessor=None, causal=None)

	

	
addRule(doc, func, _preprocess=1)

	

	
ambiguity(rules)

	

	
augment(start)

	

	
buildTree(nt, item, tokens, k)

	

	
causal(key)

	

	
collectRules()

	

	
computeNull()

	

	
deriveEpsilon(nt)

	

	
error(token)

	

	
finalState(tokens)

	

	
goto(state, sym)

	

	
gotoST(state, st)

	

	
gotoT(state, t)

	

	
isnullable(sym)

	

	
makeNewRules()

	

	
makeSet(token, sets, i)

	

	
makeSet_fast(token, sets, i)

	

	
makeState(state, sym)

	

	
makeState0()

	

	
parse(tokens)

	

	
predecessor(key, causal)

	

	
preprocess(rule, func)

	

	
resolve(list)

	

	
skip(lhs_rhs, pos=0)

	

	
typestring(token)

	

	
class avocado.utils.external.spark.GenericScanner(flags=0)

	
	
error(s, pos)

	

	
makeRE(name)

	

	
position(newpos=None)

	

	
reflect()

	

	
t_default(s)

	(. | n)+

	
tokenize(s)

	

Module contents

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Internal (Core) APIs

Internal APIs that may be of interest to Avocado hackers.

Subpackages

	avocado.core.remote package
	Submodules

	avocado.core.remote.result module

	avocado.core.remote.runner module

	avocado.core.remote.test module

	Module contents

	avocado.core.restclient package
	Subpackages
	avocado.core.restclient.cli package
	Subpackages
	avocado.core.restclient.cli.actions package
	Submodules

	avocado.core.restclient.cli.actions.base module

	avocado.core.restclient.cli.actions.server module

	Module contents

	avocado.core.restclient.cli.args package
	Submodules

	avocado.core.restclient.cli.args.base module

	avocado.core.restclient.cli.args.server module

	Module contents

	Submodules

	avocado.core.restclient.cli.app module

	avocado.core.restclient.cli.parser module

	Module contents

	Submodules

	avocado.core.restclient.connection module

	avocado.core.restclient.response module

	Module contents

Submodules

avocado.core.app module

The core Avocado application.

	
class avocado.core.app.AvocadoApp

	Bases: object [http://docs.python.org/library/functions.html#object]

Avocado application.

	
run()

	

avocado.core.data_dir module

Library used to let avocado tests find important paths in the system.

The general reasoning to find paths is:

	When running in tree, don’t honor avocado.conf. Also, we get to
run/display the example tests shipped in tree.

	When avocado.conf is in /etc/avocado, or ~/.config/avocado, then honor
the values there as much as possible. If they point to a location where
we can’t write to, use the next best location available.

	The next best location is the default system wide one.

	The next best location is the default user specific one.

	
avocado.core.data_dir.clean_tmp_files()

	Try to clean the tmp directory by removing it.

This is a useful function for avocado entry points looking to clean after
tests/jobs are done. If OSError is raised, silently ignore the error.

	
avocado.core.data_dir.create_job_logs_dir(logdir=None, unique_id=None)

	Create a log directory for a job, or a stand alone execution of a test.

	Parameters:	
	logdir – Base log directory, if None, use value from configuration.

	unique_id – The unique identification. If None, create one.

	Return type:	basestring [http://docs.python.org/library/functions.html#basestring]

	
avocado.core.data_dir.get_base_dir()

	Get the most appropriate base dir.

The base dir is the parent location for most of the avocado other
important directories.

	Examples:

	
	Log directory

	Data directory

	Tests directory

	
avocado.core.data_dir.get_data_dir()

	Get the most appropriate data dir location.

The data dir is the location where any data necessary to job and test
operations are located.

	Examples:

	
	ISO files

	GPG files

	VM images

	Reference bitmaps

	
avocado.core.data_dir.get_datafile_path(*args)

	Get a path relative to the data dir.

	Parameters:	args – Arguments passed to os.path.join. Ex (‘images’, ‘jeos.qcow2’)

	
avocado.core.data_dir.get_logs_dir()

	Get the most appropriate log dir location.

The log dir is where we store job/test logs in general.

	
avocado.core.data_dir.get_test_dir()

	Get the most appropriate test location.

The test location is where we store tests written with the avocado API.

The heuristics used to determine the test dir are:
1) If an explicit test dir is set in the configuration system, it
is used.
2) If user is running Avocado out of the source tree, the example
test dir is used
3) System wide test dir is used
4) User default test dir (~/avocado/tests) is used

	
avocado.core.data_dir.get_tmp_dir()

	Get the most appropriate tmp dir location.

The tmp dir is where artifacts produced by the test are kept.

	Examples:

	
	Copies of a test suite source code

	Compiled test suite source code

avocado.core.dispatcher module

Extensions/plugins dispatchers.

	
class avocado.core.dispatcher.CLICmdDispatcher

	Bases: avocado.core.dispatcher.Dispatcher

Calls extensions on configure/run

Automatically adds all the extension with entry points registered under
‘avocado.plugins.cli.cmd’

	
class avocado.core.dispatcher.CLIDispatcher

	Bases: avocado.core.dispatcher.Dispatcher

Calls extensions on configure/run

Automatically adds all the extension with entry points registered under
‘avocado.plugins.cli’

	
class avocado.core.dispatcher.Dispatcher(namespace)

	Bases: stevedore.enabled.EnabledExtensionManager

Base dispatcher for various extension types

	
enabled(extension)

	

	
static store_load_failure(manager, entrypoint, exception)

	

	
class avocado.core.dispatcher.JobPrePostDispatcher

	Bases: avocado.core.dispatcher.Dispatcher

Calls extensions before Job execution

Automatically adds all the extension with entry points registered under
‘avocado.plugins.job.prepost’

	
map_method(method_name, job)

	

	
class avocado.core.dispatcher.ResultDispatcher

	Bases: avocado.core.dispatcher.Dispatcher

	
map_method(method_name, result, job)

	

avocado.core.exceptions module

Exception classes, useful for tests, and other parts of the framework code.

	
exception avocado.core.exceptions.JobBaseException

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

The parent of all job exceptions.

You should be never raising this, but just in case, we’ll set its
status’ as FAIL.

	
status = 'FAIL'

	

	
exception avocado.core.exceptions.JobError

	Bases: avocado.core.exceptions.JobBaseException

A generic error happened during a job execution.

	
status = 'ERROR'

	

	
exception avocado.core.exceptions.NotATestError

	Bases: avocado.core.exceptions.TestBaseException

Indicates that the file is not a test.

Causes: Non executable, non python file or python module without
an avocado test class in it.

	
status = 'NOT_A_TEST'

	

	
exception avocado.core.exceptions.OptionValidationError

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

An invalid option was passed to the test runner

	
status = 'ERROR'

	

	
exception avocado.core.exceptions.TestAbortError

	Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was prematurely aborted.

	
status = 'ERROR'

	

	
exception avocado.core.exceptions.TestBaseException

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

The parent of all test exceptions.

You should be never raising this, but just in case, we’ll set its
status’ as FAIL.

	
status = 'FAIL'

	

	
exception avocado.core.exceptions.TestError

	Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was not fully executed and an error happened.

This is the sort of exception you raise if the test was partially
executed and could not complete due to a setup, configuration,
or another fatal condition.

	
status = 'ERROR'

	

	
exception avocado.core.exceptions.TestFail

	Bases: avocado.core.exceptions.TestBaseException, exceptions.AssertionError [http://docs.python.org/library/exceptions.html#exceptions.AssertionError]

Indicates that the test failed.

TestFail inherits from AssertionError in order to keep compatibility
with vanilla python unittests (they only consider failures the ones
deriving from AssertionError).

	
status = 'FAIL'

	

	
exception avocado.core.exceptions.TestInterruptedError

	Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was interrupted by the user (Ctrl+C)

	
status = 'INTERRUPTED'

	

	
exception avocado.core.exceptions.TestNotFoundError

	Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was not found in the test directory.

	
status = 'ERROR'

	

	
exception avocado.core.exceptions.TestSetupFail

	Bases: avocado.core.exceptions.TestBaseException

Indicates an error during a setup or cleanup procedure.

	
status = 'ERROR'

	

	
exception avocado.core.exceptions.TestSkipError

	Bases: avocado.core.exceptions.TestBaseException

Indictates that the test is skipped.

Should be thrown when various conditions are such that the test is
inappropriate. For example, inappropriate architecture, wrong OS version,
program being tested does not have the expected capability (older version).

	
status = 'SKIP'

	

	
exception avocado.core.exceptions.TestTimeoutInterrupted

	Bases: avocado.core.exceptions.TestBaseException

Indicates that the test did not finish before the timeout specified.

	
status = 'INTERRUPTED'

	

	
exception avocado.core.exceptions.TestTimeoutSkip

	Bases: avocado.core.exceptions.TestBaseException

Indicates that the test is skipped due to a job timeout.

	
status = 'SKIP'

	

	
exception avocado.core.exceptions.TestWarn

	Bases: avocado.core.exceptions.TestBaseException

Indicates that bad things (may) have happened, but not an explicit
failure.

	
status = 'WARN'

	

	
avocado.core.exceptions.fail_on(exceptions=None)

	Fail the test when decorated function produces exception of the specified
type.

(For example, our method may raise IndexError on tested software failure.
We can either try/catch it or use this decorator instead)

	Parameters:	exceptions – Tuple or single exception to be assumed as
test fail [Exception]

	Note:	self.error and self.skip behavior remains intact

	Note:	To allow simple usage param “exceptions” must not be callable

avocado.core.exit_codes module

Avocado exit codes.

These codes are returned on the command line and may be used by applications
that interface (that is, run) the Avocado command line application.

Besides main status about the execution of the command line application, these
exit status may also give extra, although limited, information about test
statuses.

	
avocado.core.exit_codes.AVOCADO_ALL_OK = 0

	Both job and tests PASSed

	
avocado.core.exit_codes.AVOCADO_FAIL = 4

	Something else went wrong and avocado failed (or crashed). Commonly
used on command line validation errors.

	
avocado.core.exit_codes.AVOCADO_GENERIC_CRASH = -1

	Avocado generic crash

	
avocado.core.exit_codes.AVOCADO_JOB_FAIL = 2

	Something went wrong with the Job itself, by explicit
avocado.core.exceptions.JobError exception.

	
avocado.core.exit_codes.AVOCADO_JOB_INTERRUPTED = 8

	The job was explicitly interrupted. Usually this means that a user
hit CTRL+C while the job was still running.

	
avocado.core.exit_codes.AVOCADO_TESTS_FAIL = 1

	Job went fine, but some tests FAILed or ERRORed

avocado.core.job module

Job module - describes a sequence of automated test operations.

	
class avocado.core.job.Job(args=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

A Job is a set of operations performed on a test machine.

Most of the time, we are interested in simply running tests,
along with setup operations and event recording.

Creates an instance of Job class.

	Parameters:	args – an instance of argparse.Namespace [http://docs.python.org/library/argparse.html#argparse.Namespace].

	
run()

	Handled main job method. Runs a list of test URLs to its completion.

The test runner figures out which tests need to be run on an empty urls
list by assuming the first component of the shortname is the test url.

	Returns:	Integer with overall job status. See
avocado.core.exit_codes for more information.

	
test_suite = None

	The list of discovered/resolved tests that will be attempted to
be run by this job. If set to None, it means that test resolution
has not been attempted. If set to an empty list, it means that no
test was found during resolution.

	
class avocado.core.job.TestProgram

	Bases: object [http://docs.python.org/library/functions.html#object]

Convenience class to make avocado test modules executable.

	
parseArgs(argv)

	

	
runTests()

	

	
avocado.core.job.main

	alias of TestProgram

avocado.core.job_id module

	
avocado.core.job_id.create_unique_job_id()

	Create a 40 digit hex number to be used as a job ID string.
(similar to SHA1)

	Returns:	40 digit hex number string

	Return type:	str [http://docs.python.org/library/functions.html#str]

avocado.core.jobdata module

Record/retrieve job information

	
avocado.core.jobdata.get_id(path, jobid)

	Gets the full Job ID using the results directory path and a partial
Job ID or the string ‘latest’.

	
avocado.core.jobdata.get_resultsdir(logdir, jobid)

	Gets the job results directory using a Job ID.

	
avocado.core.jobdata.record(args, logdir, mux, urls=None, cmdline=None)

	Records all required job information.

	
avocado.core.jobdata.retrieve_args(resultsdir)

	Retrieves the job args from the results directory.

	
avocado.core.jobdata.retrieve_cmdline(resultsdir)

	Retrieves the job command line from the results directory.

	
avocado.core.jobdata.retrieve_config(resultsdir)

	Retrieves the job settings from the results directory.

	
avocado.core.jobdata.retrieve_mux(resultsdir)

	Retrieves the job Mux object from the results directory.

	
avocado.core.jobdata.retrieve_pwd(resultsdir)

	Retrieves the job pwd from the results directory.

	
avocado.core.jobdata.retrieve_urls(resultsdir)

	Retrieves the job urls from the results directory.

avocado.core.loader module

Test loader module.

	
class avocado.core.loader.AccessDeniedPath

	Bases: object [http://docs.python.org/library/functions.html#object]

Dummy object to represent url pointing to a inaccessible path

	
class avocado.core.loader.BrokenSymlink

	Bases: object [http://docs.python.org/library/functions.html#object]

Dummy object to represent url pointing to a BrokenSymlink path

	
class avocado.core.loader.ExternalLoader(args, extra_params)

	Bases: avocado.core.loader.TestLoader

External-runner loader class

	
discover(url, which_tests=False)

	

	Parameters:	
	url – arguments passed to the external_runner

	which_tests – Limit tests to be displayed (ALL, AVAILABLE or
DEFAULT)

	Returns:	list of matching tests

	
static get_decorator_mapping()

	

	
static get_type_label_mapping()

	

	
name = 'external'

	

	
class avocado.core.loader.FileLoader(args, extra_params)

	Bases: avocado.core.loader.TestLoader

Test loader class.

	
discover(url, which_tests=False)

	Discover (possible) tests from a directory.

Recursively walk in a directory and find tests params.
The tests are returned in alphabetic order.

Afterwards when “allowed_test_types” is supplied it verifies if all
found tests are of the allowed type. If not return None (even on
partial match).

	Parameters:	
	url – the directory path to inspect.

	which_tests – Limit tests to be displayed (ALL, AVAILABLE or
DEFAULT)

	Returns:	list of matching tests

	
static get_decorator_mapping()

	

	
static get_type_label_mapping()

	

	
name = 'file'

	

	
class avocado.core.loader.FilteredOut

	Bases: object [http://docs.python.org/library/functions.html#object]

Dummy object to represent test filtered out by the optional mask

	
exception avocado.core.loader.InvalidLoaderPlugin

	Bases: avocado.core.loader.LoaderError

Invalid loader plugin

	
exception avocado.core.loader.LoaderError

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

Loader exception

	
exception avocado.core.loader.LoaderUnhandledUrlError(unhandled_urls, plugins)

	Bases: avocado.core.loader.LoaderError

Urls not handled by any loader

	
class avocado.core.loader.TestLoader(args, extra_params)

	Bases: object [http://docs.python.org/library/functions.html#object]

Base for test loader classes

	
discover(url, which_tests=False)

	Discover (possible) tests from an url.

	Parameters:	
	url (str [http://docs.python.org/library/functions.html#str]) – the url to be inspected.

	which_tests – Limit tests to be displayed (ALL, AVAILABLE or
DEFAULT)

	Returns:	a list of test matching the url as params.

	
static get_decorator_mapping()

	Get label mapping for display in test listing.

	Returns:	Dict {TestClass: decorator function}

	
get_extra_listing()

	

	
static get_type_label_mapping()

	Get label mapping for display in test listing.

	Returns:	Dict {TestClass: ‘TEST_LABEL_STRING’}

	
name = None

	

	
class avocado.core.loader.TestLoaderProxy

	Bases: object [http://docs.python.org/library/functions.html#object]

	
discover(urls, which_tests=False)

	Discover (possible) tests from test urls.

	Parameters:	
	urls (builtin.list) – a list of tests urls; if [] use plugin defaults

	which_tests – Limit tests to be displayed (ALL, AVAILABLE or
DEFAULT)

	Returns:	A list of test factories (tuples (TestClass, test_params))

	
get_base_keywords()

	

	
get_decorator_mapping()

	

	
get_extra_listing()

	

	
get_type_label_mapping()

	

	
load_plugins(args)

	

	
load_test(test_factory)

	Load test from the test factory.

	Parameters:	test_factory (tuple [http://docs.python.org/library/functions.html#tuple]) – a pair of test class and parameters.

	Returns:	an instance of avocado.core.test.Test.

	
register_plugin(plugin)

	

	
avocado.core.loader.add_loader_options(parser)

	

avocado.core.multiplexer module

Multiplex and create variants.

	
class avocado.core.multiplexer.AvocadoParam(leaves, name)

	Bases: object [http://docs.python.org/library/functions.html#object]

This is a single slice params. It can contain multiple leaves and tries to
find matching results.

	Parameters:	
	leaves – this slice’s leaves

	name – this slice’s name (identifier used in exceptions)

	
get_or_die(path, key)

	Get a value or raise exception if not present
:raise NoMatchError: When no matches
:raise KeyError: When value is not certain (multiple matches)

	
iteritems()

	Very basic implementation which iterates through __ALL__ params,
which generates lots of duplicate entries due to inherited values.

	
str_leaves_variant

	String with identifier and all params

	
class avocado.core.multiplexer.AvocadoParams(leaves, test_id, mux_path, default_params)

	Bases: object [http://docs.python.org/library/functions.html#object]

Params object used to retrieve params from given path. It supports
absolute and relative paths. For relative paths one can define multiple
paths to search for the value.
It contains compatibility wrapper to act as the original avocado Params,
but by special usage you can utilize the new API. See get()
docstring for details.

You can also iterate through all keys, but this can generate quite a lot
of duplicate entries inherited from ancestor nodes. It shouldn’t produce
false values, though.

In this version each new “get()” call is logged into “avocado.test” log.
This is subject of change (separate file, perhaps)

	Parameters:	
	leaves – List of TreeNode leaves defining current variant

	test_id – test id

	mux_path – list of entry points

	default_params – dict of params used when no matches found

	
get(key, path=None, default=None)

	Retrieve value associated with key from params
:param key: Key you’re looking for
:param path: namespace [‘*’]
:param default: default value when not found
:raise KeyError: In case of multiple different values (params clash)

	
iteritems()

	Iterate through all available params and yield origin, key and value
of each unique value.

	
log(key, path, default, value)

	Predefined format for displaying params query

	
objects(key, path=None)

	Return the names of objects defined using a given key.

	Parameters:	key – The name of the key whose value lists the objects
(e.g. ‘nics’).

	
class avocado.core.multiplexer.Mux(debug=False)

	Bases: object [http://docs.python.org/library/functions.html#object]

This is a multiplex object which multiplexes the test_suite.

	Parameters:	debug – Store whether this instance should debug the mux

	Note:	people need to check whether mux uses debug and reflect that
in order to provide the right results.

	
data_inject(key, value, path=None)

	Inject entry to the mux tree (params database)

	Parameters:	
	key – Key to which we’d like to assign the value

	value – The key’s value

	path – Optional path to the node to which we assign the value,
by default ‘/’.

	
data_merge(tree)

	Merge tree into the mux tree (params database)

	Parameters:	tree (avocado.core.tree.TreeNode) – Tree to be merged into this database.

	
get_number_of_tests(test_suite)

	

	Returns:	overall number of tests * multiplex variants

	
is_parsed()

	Reports whether the tree was already multiplexed

	
itertests()

	Yield variant-id and test params

:yield (variant-id, (list of leaves, list of multiplex paths))

	
parse(args)

	Apply options defined on the cmdline

	Parameters:	args – Parsed cmdline arguments

	
class avocado.core.multiplexer.MuxTree(root)

	Bases: object [http://docs.python.org/library/functions.html#object]

Object representing part of the tree from the root to leaves or another
multiplex domain. Recursively it creates multiplexed variants of the full
tree.

	Parameters:	root – Root of this tree slice

	
exception avocado.core.multiplexer.NoMatchError

	Bases: exceptions.KeyError [http://docs.python.org/library/exceptions.html#exceptions.KeyError]

avocado.core.output module

Manages output and logging in avocado applications.

	
avocado.core.output.BUILTIN_STREAMS = {'test': 'test output', 'debug': 'tracebacks and other debugging info', 'app': 'application output', 'early': 'early logging of other streams, including test (very verbose)', 'remote': 'fabric/paramiko debug'}

	Builtin special keywords to enable set of logging streams

	
avocado.core.output.BUILTIN_STREAM_SETS = {'all': 'all builtin streams', 'none': 'disables regular output (leaving only errors enabled)'}

	Groups of builtin streams

	
class avocado.core.output.FilterInfoAndLess(name='')

	Bases: logging.Filter [http://docs.python.org/library/logging.html#logging.Filter]

Initialize a filter.

Initialize with the name of the logger which, together with its
children, will have its events allowed through the filter. If no
name is specified, allow every event.

	
filter(record)

	

	
class avocado.core.output.FilterWarnAndMore(name='')

	Bases: logging.Filter [http://docs.python.org/library/logging.html#logging.Filter]

Initialize a filter.

Initialize with the name of the logger which, together with its
children, will have its events allowed through the filter. If no
name is specified, allow every event.

	
filter(record)

	

	
class avocado.core.output.LoggingFile(prefix='', level=10, logger=[<logging.RootLogger object at 0x7f6cc25f8a50>])

	Bases: object [http://docs.python.org/library/functions.html#object]

File-like object that will receive messages pass them to logging.

Constructor. Sets prefixes and which logger is going to be used.

:param prefix - The prefix for each line logged by this object.

	
flush()

	

	
isatty()

	

	
write(data)

	”
Writes data only if it constitutes a whole line. If it’s not the case,
store it in a buffer and wait until we have a complete line.
:param data - Raw data (a string) that will be processed.

	
writelines(lines)

	”
Writes itertable of lines

	Parameters:	lines – An iterable of strings that will be processed.

	
class avocado.core.output.MemStreamHandler(stream=None)

	Bases: logging.StreamHandler [http://docs.python.org/library/logging.handlers.html#logging.StreamHandler]

Handler that stores all records in self.log (shared in all instances)

Initialize the handler.

If stream is not specified, sys.stderr is used.

	
emit(record)

	

	
flush()

	This is in-mem object, it does not require flushing

	
log = []

	

	
exception avocado.core.output.PagerNotFoundError

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

	
class avocado.core.output.Paginator

	Bases: object [http://docs.python.org/library/functions.html#object]

Paginator that uses less to display contents on the terminal.

Contains cleanup handling for when user presses ‘q’ (to quit less).

	
close()

	

	
write(msg)

	

	
class avocado.core.output.ProgressStreamHandler(stream=None)

	Bases: logging.StreamHandler [http://docs.python.org/library/logging.handlers.html#logging.StreamHandler]

Handler class that allows users to skip new lines on each emission.

Initialize the handler.

If stream is not specified, sys.stderr is used.

	
emit(record)

	

	
avocado.core.output.STD_OUTPUT = <avocado.core.output.StdOutput object>

	Allows modifying the sys.stdout/sys.stderr

	
class avocado.core.output.StdOutput

	Bases: object [http://docs.python.org/library/functions.html#object]

Class to modify sys.stdout/sys.stderr

	
close()

	Enable original sys.stdout/sys.stderr and cleanup

	
enable_outputs()

	Enable sys.stdout/sys.stderr (either with 2 streams or with paginator)

	
enable_paginator()

	Enable paginator

	
enable_stderr()

	Enable sys.stderr and disable sys.stdout

	
fake_outputs()

	Replace sys.stdout/sys.stderr with in-memory-objects

	
print_records()

	Prints all stored messages as they occurred into streams they were
produced for.

	
records = []

	List of records of stored output when stdout/stderr is disabled

	
avocado.core.output.TERM_SUPPORT = <avocado.core.output.TermSupport object>

	Transparently handles colored terminal, when one is used

	
class avocado.core.output.TermSupport

	Bases: object [http://docs.python.org/library/functions.html#object]

	
COLOR_BLUE = '\x1b[94m'

	

	
COLOR_DARKGREY = '\x1b[90m'

	

	
COLOR_GREEN = '\x1b[92m'

	

	
COLOR_RED = '\x1b[91m'

	

	
COLOR_YELLOW = '\x1b[93m'

	

	
CONTROL_END = '\x1b[0m'

	

	
ESCAPE_CODES = ['\x1b[94m', '\x1b[92m', '\x1b[93m', '\x1b[91m', '\x1b[90m', '\x1b[0m', '\x1b[1D', '\x1b[1C']

	Class to help applications to colorize their outputs for terminals.

This will probe the current terminal and colorize ouput only if the
stdout is in a tty or the terminal type is recognized.

	
MOVE_BACK = '\x1b[1D'

	

	
MOVE_FORWARD = '\x1b[1C'

	

	
disable()

	Disable colors from the strings output by this class.

	
error_str()

	Print a error string (red colored).

If the output does not support colors, just return the original string.

	
fail_header_str(msg)

	Print a fail header string (red colored).

If the output does not support colors, just return the original string.

	
fail_str()

	Print a fail string (red colored).

If the output does not support colors, just return the original string.

	
header_str(msg)

	Print a header string (blue colored).

If the output does not support colors, just return the original string.

	
healthy_str(msg)

	Print a healthy string (green colored).

If the output does not support colors, just return the original string.

	
interrupt_str()

	Print an interrupt string (red colored).

If the output does not support colors, just return the original string.

	
partial_str(msg)

	Print a string that denotes partial progress (yellow colored).

If the output does not support colors, just return the original string.

	
pass_str()

	Print a pass string (green colored).

If the output does not support colors, just return the original string.

	
skip_str()

	Print a skip string (yellow colored).

If the output does not support colors, just return the original string.

	
warn_header_str(msg)

	Print a warning header string (yellow colored).

If the output does not support colors, just return the original string.

	
warn_str()

	Print an warning string (yellow colored).

If the output does not support colors, just return the original string.

	
class avocado.core.output.Throbber

	Bases: object [http://docs.python.org/library/functions.html#object]

Produces a spinner used to notify progress in the application UI.

	
MOVES = ['', '', '', '']

	

	
STEPS = ['-', '\\', '|', '/']

	

	
render()

	

	
avocado.core.output.add_log_handler(logger, klass=<class 'logging.StreamHandler'>, stream=<open file '<stdout>', mode 'w'>, level=20, fmt='%(name)s: %(message)s')

	Add handler to a logger.

	Parameters:	
	logger_name – the name of a logging.Logger [http://docs.python.org/library/logging.html#logging.Logger] instance, that
is, the parameter to logging.getLogger() [http://docs.python.org/library/logging.html#logging.getLogger]

	klass – Handler class (defaults to logging.StreamHandler [http://docs.python.org/library/logging.handlers.html#logging.StreamHandler])

	stream – Logging stream, to be passed as an argument to klass
(defaults to sys.stdout)

	level – Log level (defaults to INFO`)

	fmt – Logging format (defaults to %(name)s: %(message)s)

	
avocado.core.output.disable_log_handler(logger)

	

	
avocado.core.output.early_start()

	Replace all outputs with in-memory handlers

	
avocado.core.output.log_plugin_failures(failures)

	Log in the application UI failures to load a set of plugins

	Parameters:	failures – a list of load failures, usually coming from a
avocado.core.dispatcher.Dispatcher
attribute load_failures

	
avocado.core.output.reconfigure(args)

	Adjust logging handlers accordingly to app args and re-log messages.

avocado.core.parser module

Avocado application command line parsing.

	
class avocado.core.parser.ArgumentParser(prog=None, usage=None, description=None, epilog=None, version=None, parents=[], formatter_class=<class 'argparse.HelpFormatter'>, prefix_chars='-', fromfile_prefix_chars=None, argument_default=None, conflict_handler='error', add_help=True)

	Bases: argparse.ArgumentParser [http://docs.python.org/library/argparse.html#argparse.ArgumentParser]

Class to override argparse functions

	
error(message)

	

	
class avocado.core.parser.FileOrStdoutAction(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None)

	Bases: argparse.Action [http://docs.python.org/library/argparse.html#argparse.Action]

Controls claiming the right to write to the application standard output

	
class avocado.core.parser.Parser

	Bases: object [http://docs.python.org/library/functions.html#object]

Class to Parse the command line arguments.

	
finish()

	Finish the process of parsing arguments.

Side effect: set the final value for attribute args.

	
start()

	Start to parsing arguments.

At the end of this method, the support for subparsers is activated.
Side effect: update attribute args (the namespace).

avocado.core.plugin_interfaces module

	
class avocado.core.plugin_interfaces.CLI

	Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding options (non-commands) to the command line

Plugins that want to add extra options to the core command line application
or to sub commands should use the ‘avocado.plugins.cli’ namespace.

	
configure(parser)

	Configures the command line parser with options specific to this plugin

	
run(args)

	Execute any action the plugin intends.

Example of action may include activating a special features upon
finding that the requested command line options were set by the user.

Note: this plugin class is not intended for adding new commands, for
that please use CLICmd.

	
class avocado.core.plugin_interfaces.CLICmd

	Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding new commands to the command line app

Plugins that want to add extensions to the run command should use the
‘avocado.plugins.cli.cmd’ namespace.

	
configure(parser)

	Lets the extension add command line options and do early configuration

By default it will register its name as the command name and give
its description as the help message.

	
description = None

	

	
name = None

	

	
run(args)

	Entry point for actually running the command

	
class avocado.core.plugin_interfaces.JobPost

	Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding actions after a job runs

Plugins that want to add actions to be run after a job runs,
should use the ‘avocado.plugins.job.prepost’ namespace and
implement the defined interface.

	
post(job)

	Entry point for actually running the post job action

	
class avocado.core.plugin_interfaces.JobPre

	Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding actions before a job runs

Plugins that want to add actions to be run before a job runs,
should use the ‘avocado.plugins.job.prepost’ namespace and
implement the defined interface.

	
pre(job)

	Entry point for actually running the pre job action

	
class avocado.core.plugin_interfaces.Plugin

	Bases: object [http://docs.python.org/library/functions.html#object]

	
class avocado.core.plugin_interfaces.Result

	Bases: avocado.core.plugin_interfaces.Plugin

	
render(result, job)

	Entry point with method that renders the result

This will usually be used to write the result to a file or directory.

	Parameters:	
	result (avocado.core.result.Result) – the complete job result

	job (avocado.core.job.Job) – the finished job for which a result will be written

avocado.core.remoter module

Module to provide remote operations.

	
exception avocado.core.remoter.ConnectionError

	Bases: avocado.core.remoter.RemoterError

	
class avocado.core.remoter.Remote(hostname, username=None, password=None, key_filename=None, port=22, timeout=60, attempts=10, env_keep=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Performs remote operations.

Creates an instance of Remote.

	Parameters:	
	hostname – the hostname.

	username – the username. Default: autodetect.

	password – the password. Default: try to use public key.

	key_filename – path to an identity file (Example: .pem files
from Amazon EC2).

	timeout – remote command timeout, in seconds. Default: 60.

	attempts – number of attempts to connect. Default: 10.

	
makedir(remote_path)

	Create a directory.

	Parameters:	remote_path – the remote path to create.

	
receive_files(*args, **kwargs)

	

	
run(*args, **kwargs)

	

	
send_files(*args, **kwargs)

	

	
uptime()

	Performs uptime (good to check connection).

	Returns:	the uptime string or empty string if fails.

	
exception avocado.core.remoter.RemoterError

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

	
avocado.core.remoter.receive_files(local_path, remote_path)

	Receive files from the defined fabric host.

This assumes the fabric environment was previously (and properly)
initialized.

	Parameters:	
	local_path – the local path.

	remote_path – the remote path.

	
avocado.core.remoter.run(command, ignore_status=False, quiet=True, timeout=60)

	Executes a command on the defined fabric hosts.

This is basically a wrapper to fabric.operations.run, encapsulating
the result on an avocado process.CmdResult object. This also assumes
the fabric environment was previously (and properly) initialized.

	Parameters:	
	command – the command string to execute.

	ignore_status – Whether to not raise exceptions in case the
command’s return code is different than zero.

	timeout – Maximum time allowed for the command to return.

	quiet – Whether to not log command stdout/err. Default: True.

	Returns:	the result of the remote program’s execution.

	Return type:	avocado.utils.process.CmdResult.

	Raises:	fabric.exceptions.CommandTimeout – When timeout exhausted.

	
avocado.core.remoter.send_files(local_path, remote_path)

	Send files to the defined fabric host.

This assumes the fabric environment was previously (and properly)
initialized.

	Parameters:	
	local_path – the local path.

	remote_path – the remote path.

avocado.core.result module

Contains the definition of the Result class, used for output in avocado.

It also contains the most basic result class, HumanResult, used by the
test runner.

	
class avocado.core.result.HumanResult(job)

	Bases: avocado.core.result.Result

Human output Test result class.

	
end_test(state)

	

	
end_tests()

	Called once after all tests are executed.

	
notify_progress(progress=False)

	

	
start_test(state)

	

	
start_tests()

	Called once before any tests are executed.

	
exception avocado.core.result.InvalidOutputPlugin

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

	
class avocado.core.result.Result(job)

	Bases: object [http://docs.python.org/library/functions.html#object]

Result class, holder for job (and its tests) result information.

Creates an instance of Result.

	Parameters:	job – an instance of avocado.core.job.Job.

	
check_test(state)

	Called once for a test to check status and report.

	Parameters:	test – A dict with test internal state

	
end_test(state)

	Called when the given test has been run.

	Parameters:	state (dict [http://docs.python.org/library/stdtypes.html#dict]) – result of avocado.core.test.Test.get_state.

	
end_tests()

	Called once after all tests are executed.

	
start_test(state)

	Called when the given test is about to run.

	Parameters:	state (dict [http://docs.python.org/library/stdtypes.html#dict]) – result of avocado.core.test.Test.get_state.

	
start_tests()

	Called once before any tests are executed.

	
class avocado.core.result.ResultProxy

	Bases: object [http://docs.python.org/library/functions.html#object]

	
add_output_plugin(plugin)

	

	
check_test(state)

	

	
end_test(state)

	

	
end_tests()

	

	
notify_progress(progress_from_test=False)

	

	
start_test(state)

	

	
start_tests()

	

	
avocado.core.result.register_test_result_class(application_args, klass)

	Register the given test result class to be loaded and enabled by the job

	Parameters:	
	application_args (argparse.Namespace [http://docs.python.org/library/argparse.html#argparse.Namespace]) – the parsed application command line arguments.
This is currently being abused to hold various job
settings and feature choices, such as the runner.

	klass (a subclass of Result) – the test result class to enable

avocado.core.runner module

Test runner module.

	
class avocado.core.runner.TestRunner(job, test_result)

	Bases: object [http://docs.python.org/library/functions.html#object]

A test runner class that displays tests results.

Creates an instance of TestRunner class.

	Parameters:	
	job – an instance of avocado.core.job.Job.

	test_result – an instance of
avocado.core.result.ResultProxy.

	
DEFAULT_TIMEOUT = 86400

	

	
run_suite(test_suite, mux, timeout=0, replay_map=None, test_result_total=0)

	Run one or more tests and report with test result.

	Parameters:	
	test_suite – a list of tests to run.

	mux – the multiplexer.

	timeout – maximum amount of time (in seconds) to execute.

	Returns:	a set with types of test failures.

	
run_test(test_factory, queue, summary, job_deadline=0)

	Run a test instance inside a subprocess.

	Parameters:	
	test_factory (tuple of avocado.core.test.Test and dict.) – Test factory (test class and parameters).

	queue (:class`multiprocessing.Queue` instance.) – Multiprocess queue.

	summary (set.) – Contains types of test failures.

	job_deadline (int.) – Maximum time to execute.

	
class avocado.core.runner.TestStatus(job, queue)

	Bases: object [http://docs.python.org/library/functions.html#object]

Test status handler

	Parameters:	
	job – Associated job

	queue – test message queue

	
early_status

	Get early status

	
finish(proc, started, timeout, step)

	Wait for the test process to finish and report status or error status
if unable to obtain the status till deadline.

	Parameters:	
	proc – The test’s process

	started – Time when the test started

	timeout – Timeout for waiting on status

	first – Delay before first check

	step – Step between checks for the status

	
wait_for_early_status(proc, timeout)

	Wait until early_status is obtained
:param proc: test process
:param timeout: timeout for early_state
:raise exceptions.TestError: On timeout/error

	
avocado.core.runner.add_runner_failure(test_state, new_status, message)

	Append runner failure to the overall test status.

	Parameters:	
	test_state – Original test state (dict)

	new_status – New test status (PASS/FAIL/ERROR/INTERRUPTED/...)

	message – The error message

avocado.core.safeloader module

Safe (AST based) test loader module utilities

	
avocado.core.safeloader.AVOCADO_DOCSTRING_TAG_RE = <_sre.SRE_Pattern object>

	Gets the tag value from a string. Used to tag a test class in various ways

	
avocado.core.safeloader.find_class_and_methods(path, method_pattern=None, base_class=None)

	Attempts to find methods names from a given Python source file

	Parameters:	
	path (str [http://docs.python.org/library/functions.html#str]) – path to a Python source code file

	method_pattern – compiled regex to match against method name

	base_class (str or None) – only consider classes that inherit from a given
base class (or classes that inherit from any class
if None is given)

	
avocado.core.safeloader.get_docstring_tag(docstring)

	Returns the value of the avocado custom tag inside a docstring

	Parameters:	docstring (str [http://docs.python.org/library/functions.html#str]) – the complete text used as documentation

	
avocado.core.safeloader.is_docstring_tag_disable(docstring)

	Checks if there’s an avocado tag that disables its class as a Test class

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

	
avocado.core.safeloader.is_docstring_tag_enable(docstring)

	Checks if there’s an avocado tag that enables its class as a Test class

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

	
avocado.core.safeloader.modules_imported_as(module)

	Returns a mapping of imported module names whether using aliases or not

The goal of this utility function is to return the name of the import
as used in the rest of the module, whether an aliased import was used
or not.

For code such as:

>>> import foo as bar

This function should return {“foo”: “bar”}

And for code such as:

>>> import foo

It should return {“foo”: “foo”}

Please note that only global level imports are looked at. If there are
imports defined, say, inside functions or class definitions, they will
not be seen by this function.

	Parameters:	module (_ast.Module) – module, as parsed by ast.parse() [http://docs.python.org/library/ast.html#ast.parse]

	Returns:	a mapping of names {<realname>: <alias>} of modules imported

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

avocado.core.settings module

Reads the avocado settings from a .ini file (from python ConfigParser).

	
exception avocado.core.settings.ConfigFileNotFound(path_list)

	Bases: avocado.core.settings.SettingsError

Error thrown when the main settings file could not be found.

	
class avocado.core.settings.Settings(config_path=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Simple wrapper around ConfigParser, with a key type conversion available.

Constructor. Tries to find the main settings file and load it.

	Parameters:	config_path – Path to a config file. Useful for unittesting.

	
get_value(section, key, key_type=<type 'str'>, default=<object object>, allow_blank=False)

	Get value from key in a given config file section.

	Parameters:	
	section (str [http://docs.python.org/library/functions.html#str]) – Config file section.

	key (str [http://docs.python.org/library/functions.html#str]) – Config file key, relative to section.

	key_type (either string based names representing types,
including str, int, float, bool,
list and path, or the types themselves
limited to str [http://docs.python.org/library/functions.html#str], int [http://docs.python.org/library/functions.html#int],
float [http://docs.python.org/library/functions.html#float], bool [http://docs.python.org/library/functions.html#bool] and
list [http://docs.python.org/library/functions.html#list].) – Type of key.

	default – Default value for the key, if none found.

	allow_blank – Whether an empty value for the key is allowed.

	Returns:	value, if one available in the config.
default value, if one provided.

	Raises:	SettingsError, in case key is not set and no default
was provided.

	
no_default = <object object>

	

	
process_config_path(pth)

	

	
exception avocado.core.settings.SettingsError

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

Base settings error.

	
exception avocado.core.settings.SettingsValueError

	Bases: avocado.core.settings.SettingsError

Error thrown when we could not convert successfully a key to a value.

	
avocado.core.settings.convert_value_type(value, value_type)

	Convert a string value to a given value type.

	Parameters:	
	value (str.) – Value we want to convert.

	value_type (str or type.) – Type of the value we want to convert.

	Returns:	Converted value type.

	Return type:	Dependent on value_type.

	Raise:	TypeError, in case it was not possible to convert values.

avocado.core.status module

Maps the different status strings in avocado to booleans.

This is used by methods and functions to return a cut and dry answer to whether
a test or a job in avocado PASSed or FAILed.

avocado.core.sysinfo module

	
class avocado.core.sysinfo.Collectible(logf)

	Bases: object [http://docs.python.org/library/functions.html#object]

Abstract class for representing collectibles by sysinfo.

	
readline(logdir)

	Read one line of the collectible object.

	Parameters:	logdir – Path to a log directory.

	
class avocado.core.sysinfo.Command(cmd, logf=None, compress_log=False)

	Bases: avocado.core.sysinfo.Collectible

Collectible command.

	Parameters:	
	cmd – String with the command.

	logf – Basename of the file where output is logged (optional).

	compress_logf – Wether to compress the output of the command.

	
run(logdir)

	Execute the command as a subprocess and log its output in logdir.

	Parameters:	logdir – Path to a log directory.

	
class avocado.core.sysinfo.Daemon(cmd, logf=None, compress_log=False)

	Bases: avocado.core.sysinfo.Command

Collectible daemon.

	Parameters:	
	cmd – String with the daemon command.

	logf – Basename of the file where output is logged (optional).

	compress_logf – Wether to compress the output of the command.

	
run(logdir)

	Execute the daemon as a subprocess and log its output in logdir.

	Parameters:	logdir – Path to a log directory.

	
stop()

	Stop daemon execution.

	
class avocado.core.sysinfo.JournalctlWatcher(logf=None)

	Bases: avocado.core.sysinfo.Collectible

Track the content of systemd journal into a compressed file.

	Parameters:	logf – Basename of the file where output is logged (optional).

	
run(logdir)

	

	
class avocado.core.sysinfo.LogWatcher(path, logf=None)

	Bases: avocado.core.sysinfo.Collectible

Keep track of the contents of a log file in another compressed file.

This object is normally used to track contents of the system log
(/var/log/messages), and the outputs are gzipped since they can be
potentially large, helping to save space.

	Parameters:	
	path – Path to the log file.

	logf – Basename of the file where output is logged (optional).

	
run(logdir)

	Log all of the new data present in the log file.

	
class avocado.core.sysinfo.Logfile(path, logf=None)

	Bases: avocado.core.sysinfo.Collectible

Collectible system file.

	Parameters:	
	path – Path to the log file.

	logf – Basename of the file where output is logged (optional).

	
run(logdir)

	Copy the log file to the appropriate log dir.

	Parameters:	logdir – Log directory which the file is going to be copied to.

	
class avocado.core.sysinfo.SysInfo(basedir=None, log_packages=None, profiler=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Log different system properties at some key control points:

	start_job

	start_test

	end_test

	end_job

Set sysinfo collectibles.

	Parameters:	
	basedir – Base log dir where sysinfo files will be located.

	log_packages – Whether to log system packages (optional because
logging packages is a costly operation). If not
given explicitly, tries to look in the config
files, and if not found, defaults to False.

	profiler – Wether to use the profiler. If not given explicitly,
tries to look in the config files.

	
add_cmd(cmd, hook)

	Add a command collectible.

	Parameters:	
	cmd – Command to log.

	hook – In which hook this cmd should be logged (start job, end
job).

	
add_file(filename, hook)

	Add a system file collectible.

	Parameters:	
	filename – Path to the file to be logged.

	hook – In which hook this file should be logged (start job, end
job).

	
add_watcher(filename, hook)

	Add a system file watcher collectible.

	Parameters:	
	filename – Path to the file to be logged.

	hook – In which hook this watcher should be logged (start job, end
job).

	
end_job_hook()

	Logging hook called whenever a job finishes.

	
end_test_hook()

	Logging hook called after a test finishes.

	
start_job_hook()

	Logging hook called whenever a job starts.

	
start_test_hook()

	Logging hook called before a test starts.

	
avocado.core.sysinfo.collect_sysinfo(args)

	Collect sysinfo to a base directory.

	Parameters:	args – argparse.Namespace [http://docs.python.org/library/argparse.html#argparse.Namespace] object with command line params.

avocado.core.test module

Contains the base test implementation, used as a base for the actual
framework tests.

	
class avocado.core.test.DryRunTest(*args, **kwargs)

	Bases: avocado.core.test.SkipTest

Fake test which logs itself and reports as SKIP

This class substitutes other classes. Let’s just ignore the remaining
arguments and only set the ones supported by avocado.Test

	
setUp()

	

	
class avocado.core.test.ExternalRunnerTest(name, params=None, base_logdir=None, job=None, external_runner=None)

	Bases: avocado.core.test.SimpleTest

	
filename

	

	
test()

	

	
class avocado.core.test.MissingTest(methodName='test', name=None, params=None, base_logdir=None, job=None, runner_queue=None)

	Bases: avocado.core.test.Test

Handle when there is no such test module in the test directory.

Initializes the test.

	Parameters:	
	methodName – Name of the main method to run. For the sake of
compatibility with the original unittest class,
you should not set this.

	name (avocado.core.test.TestName) – Pretty name of the test name. For normal tests,
written with the avocado API, this should not be
set. This is reserved for internal Avocado use,
such as when running random executables as tests.

	base_logdir – Directory where test logs should go. If None
provided, it’ll use
avocado.data_dir.create_job_logs_dir().

	job – The job that this test is part of.

	Raises:	avocado.core.test.NameNotTestNameError

	
test()

	

	
exception avocado.core.test.NameNotTestNameError

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

The given test name is not a TestName instance

With the introduction of avocado.core.test.TestName, it’s
not allowed to use other types as the name parameter to a test
instance. This exception is raised when this is attempted.

	
class avocado.core.test.NotATest(methodName='test', name=None, params=None, base_logdir=None, job=None, runner_queue=None)

	Bases: avocado.core.test.Test

The file is not a test.

Either a non executable python module with no avocado test class in it,
or a regular, non executable file.

Initializes the test.

	Parameters:	
	methodName – Name of the main method to run. For the sake of
compatibility with the original unittest class,
you should not set this.

	name (avocado.core.test.TestName) – Pretty name of the test name. For normal tests,
written with the avocado API, this should not be
set. This is reserved for internal Avocado use,
such as when running random executables as tests.

	base_logdir – Directory where test logs should go. If None
provided, it’ll use
avocado.data_dir.create_job_logs_dir().

	job – The job that this test is part of.

	Raises:	avocado.core.test.NameNotTestNameError

	
test()

	

	
class avocado.core.test.ReplaySkipTest(*args, **kwargs)

	Bases: avocado.core.test.SkipTest

Skip test due to job replay filter.

This test is skipped due to a job replay filter.
It will never have a chance to execute.

This class substitutes other classes. Let’s just ignore the remaining
arguments and only set the ones supported by avocado.Test

	
class avocado.core.test.SimpleTest(name, params=None, base_logdir=None, job=None)

	Bases: avocado.core.test.Test

Run an arbitrary command that returns either 0 (PASS) or !=0 (FAIL).

	
execute_cmd()

	Run the executable, and log its detailed execution.

	
filename

	Returns the name of the file (path) that holds the current test

	
re_avocado_log = <_sre.SRE_Pattern object at 0x1ddfb60>

	

	
test()

	Run the test and postprocess the results

	
class avocado.core.test.SkipTest(*args, **kwargs)

	Bases: avocado.core.test.Test

Class intended as generic substitute for avocado tests which fails during
setUp phase using “self._skip_reason” message.

This class substitutes other classes. Let’s just ignore the remaining
arguments and only set the ones supported by avocado.Test

	
setUp()

	

	
test()

	Should not be executed

	
class avocado.core.test.Test(methodName='test', name=None, params=None, base_logdir=None, job=None, runner_queue=None)

	Bases: unittest.case.TestCase

Base implementation for the test class.

You’ll inherit from this to write your own tests. Typically you’ll want
to implement setUp(), test*() and tearDown() methods on your own tests.

Initializes the test.

	Parameters:	
	methodName – Name of the main method to run. For the sake of
compatibility with the original unittest class,
you should not set this.

	name (avocado.core.test.TestName) – Pretty name of the test name. For normal tests,
written with the avocado API, this should not be
set. This is reserved for internal Avocado use,
such as when running random executables as tests.

	base_logdir – Directory where test logs should go. If None
provided, it’ll use
avocado.data_dir.create_job_logs_dir().

	job – The job that this test is part of.

	Raises:	avocado.core.test.NameNotTestNameError

	
basedir

	The directory where this test (when backed by a file) is located at

	
cache_dirs = None

	

	
datadir

	Returns the path to the directory that contains test data files

	
default_params = {}

	

	
error(message=None)

	Errors the currently running test.

After calling this method a test will be terminated and have its status
as ERROR.

	Parameters:	message (str [http://docs.python.org/library/functions.html#str]) – an optional message that will be recorded in the logs

	
fail(message=None)

	Fails the currently running test.

After calling this method a test will be terminated and have its status
as FAIL.

	Parameters:	message (str [http://docs.python.org/library/functions.html#str]) – an optional message that will be recorded in the logs

	
fetch_asset(name, asset_hash=None, algorithm='sha1', locations=None, expire=None)

	Method o call the utils.asset in order to fetch and asset file
supporting hash check, caching and multiple locations.

	Parameters:	
	name – the asset filename or URL

	asset_hash – asset hash (optional)

	algorithm – hash algorithm (optional, defaults to sha1)

	locations – list of URLs from where the asset can be
fetched (optional)

	expire – time for the asset to expire

	Raises:	EnvironmentError – When it fails to fetch the asset

	Returns:	asset file local path

	
filename

	Returns the name of the file (path) that holds the current test

	
get_state()

	Serialize selected attributes representing the test state

	Returns:	a dictionary containing relevant test state data

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
report_state()

	Send the current test state to the test runner process

	
run_avocado()

	Wraps the run method, for execution inside the avocado runner.

	Result:	Unused param, compatibility with unittest.TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase].

	
skip(message=None)

	Skips the currently running test.

This method should only be called from a test’s setUp() method, not
anywhere else, since by definition, if a test gets to be executed, it
can’t be skipped anymore. If you call this method outside setUp(),
avocado will mark your test status as ERROR, and instruct you to
fix your test in the error message.

	Parameters:	message (str [http://docs.python.org/library/functions.html#str]) – an optional message that will be recorded in the logs

	
srcdir = None

	

	
workdir = None

	

	
class avocado.core.test.TestError(*args, **kwargs)

	Bases: avocado.core.test.Test

Generic test error.

	
test()

	

	
class avocado.core.test.TestName(uid, name, variant=None, no_digits=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Test name representation

Test name according to avocado specification

	Parameters:	
	uid – unique test id (within the job)

	name – test name (identifies the executed test)

	variant – variant id

	no_digits – number of digits of the test uid

	
str_filesystem()

	File-system friendly representation of the test name

	
class avocado.core.test.TimeOutSkipTest(*args, **kwargs)

	Bases: avocado.core.test.SkipTest

Skip test due job timeout.

This test is skipped due a job timeout.
It will never have a chance to execute.

This class substitutes other classes. Let’s just ignore the remaining
arguments and only set the ones supported by avocado.Test

	
setUp()

	

avocado.core.tree module

Tree data structure with nodes.

This tree structure (Tree drawing code) was inspired in the base tree data
structure of the ETE 2 project:

http://pythonhosted.org/ete2/

A library for analysis of phylogenetics trees.

Explicit permission has been given by the copyright owner of ETE 2
Jaime Huerta-Cepas <jhcepas@gmail.com> to take ideas/use snippets from his
original base tree code and re-license under GPLv2+, given that GPLv3 and GPLv2
(used in some avocado files) are incompatible.

	
class avocado.core.tree.Control(code, value=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Container used to identify node vs. control sequence

	
class avocado.core.tree.OutputList(values, nodes, yamls)

	Bases: list [http://docs.python.org/library/functions.html#list]

List with some debug info

	
class avocado.core.tree.OutputValue(value, node, srcyaml)

	Bases: object [http://docs.python.org/library/functions.html#object]

Ordinary value with some debug info

	
class avocado.core.tree.TreeNode(name='', value=None, parent=None, children=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Class for bounding nodes into tree-structure.

	
add_child(node)

	Append node as child. Nodes with the same name gets merged into the
existing position.

	
detach()

	Detach this node from parent

	
environment

	Node environment (values + preceding envs)

	
get_environment()

	Get node environment (values + preceding envs)

	
get_leaves()

	Get list of leaf nodes

	
get_node(path, create=False)

	

	Parameters:	
	path – Path of the desired node (relative to this node)

	create – Create the node (and intermediary ones) when not present

	Returns:	the node associated with this path

	Raises:	ValueError – When path doesn’t exist and create not set

	
get_parents()

	Get list of parent nodes

	
get_path(sep='/')

	Get node path

	
get_root()

	Get root of this tree

	
is_leaf

	Is this a leaf node?

	
iter_children_preorder()

	Iterate through children

	
iter_leaves()

	Iterate through leaf nodes

	
iter_parents()

	Iterate through parent nodes to root

	
merge(other)

	Merges other node into this one without checking the name of the
other node. New values are appended, existing values overwritten
and unaffected ones are kept. Then all other node children are
added as children (recursively they get either appended at the end
or merged into existing node in the previous position.

	
parents

	List of parent nodes

	
path

	Node path

	
root

	Root of this tree

	
set_environment_dirty()

	Set the environment cache dirty. You should call this always when
you query for the environment and then change the value or structure.
Otherwise you’ll get the old environment instead.

	
class avocado.core.tree.TreeNodeDebug(name='', value=None, parent=None, children=None, srcyaml=None)

	Bases: avocado.core.tree.TreeNode

Debug version of TreeNodeDebug
:warning: Origin of the value is appended to all values thus it’s not
suitable for running tests.

	
merge(other)

	Override origin with the one from other tree. Updated/Newly set values
are going to use this location as origin.

	
class avocado.core.tree.ValueDict(srcyaml, node, values)

	Bases: dict [http://docs.python.org/library/stdtypes.html#dict]

Dict which stores the origin of the items

	
iteritems()

	Slower implementation with the use of __getitem__

	
avocado.core.tree.apply_filters(tree, filter_only=None, filter_out=None)

	Apply a set of filters to the tree.

The basic filtering is filter only, which includes nodes,
and the filter out rules, that exclude nodes.

Note that filter_out is stronger than filter_only, so if you filter out
something, you could not bypass some nodes by using a filter_only rule.

	Parameters:	
	filter_only – the list of paths which will include nodes.

	filter_out – the list of paths which will exclude nodes.

	Returns:	the original tree minus the nodes filtered by the rules.

	
avocado.core.tree.get_named_tree_cls(path)

	Return TreeNodeDebug class with hardcoded yaml path

	
avocado.core.tree.path_parent(path)

	From a given path, return its parent path.

	Parameters:	path – the node path as string.

	Returns:	the parent path as string.

	
avocado.core.tree.tree_view(root, verbose=None, use_utf8=None)

	Generate tree-view of the given node
:param root: root node
:param verbose: verbosity (0, 1, 2, 3)
:param use_utf8: Use utf-8 encoding (None=autodetect)
:return: string representing this node’s tree structure

avocado.core.version module

avocado.core.virt module

Module to provide classes for Virtual Machines.

	
class avocado.core.virt.Hypervisor(uri=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

The Hypervisor connection class.

Creates an instance of class Hypervisor.

	Parameters:	uri – the connection URI.

	
connect()

	Connect to the hypervisor.

	
domains

	Property to get the list of all domains.

	Returns:	a list of instances of libvirt.virDomain.

	
find_domain_by_name(name)

	Find domain by name.

	Parameters:	domain – the domain name.

	Returns:	an instance of libvirt.virDomain.

	
static handler(ctxt, err)

	This overwrites the libvirt default error handler, in order to
avoid unwanted messages from libvirt exceptions to be sent for
stdout.

	
class avocado.core.virt.VM(hypervisor, domain)

	Bases: object [http://docs.python.org/library/functions.html#object]

The Virtual Machine handler class.

Creates an instance of VM class.

	Parameters:	
	hypervisor – an instance of Hypervisor.

	domain – an instance of libvirt.virDomain.

	
create_snapshot(name=None)

	Creates a snapshot of kind ‘system checkpoint’.

	
delete_snapshot()

	Delete the current snapshot.

	
ip_address(timeout=30)

	Returns the domain IP address consulting qemu-guest-agent
through libvirt.

	Returns:	either the IP address or None if not found

	Return type:	str or None

	
is_active

	Property to check if VM is active.

	Returns:	if VM is active.

	Return type:	Boolean

	
name

	Property with the name of VM.

	Returns:	the name of VM.

	
reboot()

	Reboot VM.

	
reset()

	Reset VM.

	
restore_snapshot()

	Revert to previous snapshot and delete the snapshot point.

	
resume()

	Resume VM.

	
revert_snapshot()

	Revert to previous snapshot.

	
setup_login(hostname, username, password=None)

	Setup login on VM.

	Parameters:	
	hostname – the hostname.

	username – the username.

	password – the password.

	
shutdown()

	Shutdown VM.

	
snapshots

	

	
start()

	Start VM.

	
state

	Property with the state of VM.

	Returns:	current state name.

	
stop()

	Stop VM.

	
suspend()

	Suspend VM.

	
exception avocado.core.virt.VirtError

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

Generic exception class to propagate underling
errors to the caller.

	
avocado.core.virt.vm_connect(domain_name, hypervisor_uri='qemu:///system')

	Connect to a Virtual Machine.

	Parameters:	
	domain_name – the domain name.

	hypervisor_uri – the hypervisor connection URI.

	Returns:	an instance of VM

Module contents

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Internal (Core) APIs

avocado.core.remote package

Submodules

avocado.core.remote.result module

Remote test results.

	
class avocado.core.remote.result.RemoteResult(job)

	Bases: avocado.core.result.HumanResult

Remote Machine Test Result class.

Creates an instance of RemoteResult.

	Parameters:	job – an instance of avocado.core.job.Job.

	
tear_down()

	Cleanup after test execution

	
class avocado.core.remote.result.VMResult(job)

	Bases: avocado.core.remote.result.RemoteResult

Virtual Machine Test Result class.

avocado.core.remote.runner module

Remote test runner.

	
class avocado.core.remote.runner.RemoteTestRunner(job, test_result)

	Bases: avocado.core.runner.TestRunner

Tooled TestRunner to run on remote machine using ssh

	
check_remote_avocado()

	Checks if the remote system appears to have avocado installed

The “appears to have” description is justified by the fact that the
check is rather simplistic, it attempts to run an avocado -v command
and checks if the output looks like what avocado would print out.

	Return type:	tuple with (bool, tuple)

	Returns:	(True, (x, y, z)) if avocado appears to be installed and
(False, None) otherwise.

	
remote = None

	remoter connection to the remote machine

	
remote_test_dir = '~/avocado/tests'

	

	
remote_version_re = <_sre.SRE_Pattern object>

	

	
run_suite(test_suite, mux, timeout=0, replay_map=None, test_result_total=0)

	Run one or more tests and report with test result.

	Parameters:	
	params_list – a list of param dicts.

	mux – A multiplex iterator (unused here)

	Returns:	a set with types of test failures.

	
run_test(urls, timeout)

	Run tests.

	Parameters:	urls – a string with test URLs.

	Returns:	a dictionary with test results.

	
setup()

	Setup remote environment and copy test directories

	
tear_down()

	This method is only called when run_suite gets to the point of to be
executing setup method and is called at the end of the execution.

	Warning:	It might be called on setup exceptions, so things
initialized during setup might not yet be initialized.

	
class avocado.core.remote.runner.VMTestRunner(job, test_result)

	Bases: avocado.core.remote.runner.RemoteTestRunner

Test runner to run tests using libvirt domain

	
setup()

	Initialize VM and establish connection

	
tear_down()

	Stop VM and restore snapshot (if asked for it)

	
vm = None

	VM used during testing

avocado.core.remote.test module

Remote test class.

	
class avocado.core.remote.test.RemoteTest(name, status, time, start, end, fail_reason, logdir, logfile)

	Bases: object [http://docs.python.org/library/functions.html#object]

Mimics avocado.core.test.Test for remote tests.

	
get_state()

	Serialize selected attributes representing the test state

	Returns:	a dictionary containing relevant test state data

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

Module contents

	
class avocado.core.remote.RemoteResult(job)

	Bases: avocado.core.result.HumanResult

Remote Machine Test Result class.

Creates an instance of RemoteResult.

	Parameters:	job – an instance of avocado.core.job.Job.

	
tear_down()

	Cleanup after test execution

	
class avocado.core.remote.VMResult(job)

	Bases: avocado.core.remote.result.RemoteResult

Virtual Machine Test Result class.

	
class avocado.core.remote.RemoteTestRunner(job, test_result)

	Bases: avocado.core.runner.TestRunner

Tooled TestRunner to run on remote machine using ssh

	
check_remote_avocado()

	Checks if the remote system appears to have avocado installed

The “appears to have” description is justified by the fact that the
check is rather simplistic, it attempts to run an avocado -v command
and checks if the output looks like what avocado would print out.

	Return type:	tuple with (bool, tuple)

	Returns:	(True, (x, y, z)) if avocado appears to be installed and
(False, None) otherwise.

	
remote_test_dir = '~/avocado/tests'

	

	
remote_version_re = <_sre.SRE_Pattern object>

	

	
run_suite(test_suite, mux, timeout=0, replay_map=None, test_result_total=0)

	Run one or more tests and report with test result.

	Parameters:	
	params_list – a list of param dicts.

	mux – A multiplex iterator (unused here)

	Returns:	a set with types of test failures.

	
run_test(urls, timeout)

	Run tests.

	Parameters:	urls – a string with test URLs.

	Returns:	a dictionary with test results.

	
setup()

	Setup remote environment and copy test directories

	
tear_down()

	This method is only called when run_suite gets to the point of to be
executing setup method and is called at the end of the execution.

	Warning:	It might be called on setup exceptions, so things
initialized during setup might not yet be initialized.

	
class avocado.core.remote.VMTestRunner(job, test_result)

	Bases: avocado.core.remote.runner.RemoteTestRunner

Test runner to run tests using libvirt domain

	
setup()

	Initialize VM and establish connection

	
tear_down()

	Stop VM and restore snapshot (if asked for it)

	
class avocado.core.remote.RemoteTest(name, status, time, start, end, fail_reason, logdir, logfile)

	Bases: object [http://docs.python.org/library/functions.html#object]

Mimics avocado.core.test.Test for remote tests.

	
get_state()

	Serialize selected attributes representing the test state

	Returns:	a dictionary containing relevant test state data

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Internal (Core) APIs

avocado.core.restclient package

Subpackages

	avocado.core.restclient.cli package
	Subpackages
	avocado.core.restclient.cli.actions package
	Submodules

	avocado.core.restclient.cli.actions.base module

	avocado.core.restclient.cli.actions.server module

	Module contents

	avocado.core.restclient.cli.args package
	Submodules

	avocado.core.restclient.cli.args.base module

	avocado.core.restclient.cli.args.server module

	Module contents

	Submodules

	avocado.core.restclient.cli.app module

	avocado.core.restclient.cli.parser module

	Module contents

Submodules

avocado.core.restclient.connection module

This module provides connection classes the avocado server.

A connection is a simple wrapper around a HTTP request instance. It is this
basic object that allows methods to be called on the remote server.

	
avocado.core.restclient.connection.get_default()

	Returns the global, default connection to avocado-server

	Returns:	an avocado.core.restclient.connection.Connection instance

	
class avocado.core.restclient.connection.Connection(hostname=None, port=None, username=None, password=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Connection to the avocado server

Initializes a connection to an avocado-server instance

	Parameters:	
	hostname (str [http://docs.python.org/library/functions.html#str]) – the hostname or IP address to connect to

	port (int [http://docs.python.org/library/functions.html#int]) – the port number where avocado-server is running

	username (str [http://docs.python.org/library/functions.html#str]) – the name of the user to be authenticated as

	password (str [http://docs.python.org/library/functions.html#str]) – the password to use for authentication

	
check_min_version(data=None)

	Checks the minimum server version

	
get_api_list()

	Gets the list of APIs the server makes available to the current user

	
get_url(path=None)

	Returns a representation of the current connection as an HTTP URL

	
ping()

	Tests connectivity to the currently set avocado-server

This is intentionally a simple method that will only return True if a
request is made, and a response is received from the server.

	
request(path, method=<function get>, check_status=True, **data)

	Performs a request to the server

This method is heavily used by upper level API methods, and more often
than not, those upper level API methods should be used instead.

	Parameters:	
	path (str [http://docs.python.org/library/functions.html#str]) – the path on the server where the resource lives

	method – the method you want to call on the remote server,
defaults to a HTTP GET

	check_status – whether to check the HTTP status code that comes
with the response. If set to True, it will
depend on the method chosen. If set to False,
no check will be performed. If an integer is given
then that specific status will be checked for.

	data – keyword arguments to be passed to the remote method

	Returns:	JSON data

avocado.core.restclient.response module

Module with base model functions to manipulate JSON data

	
class avocado.core.restclient.response.BaseResponse(json_data)

	Bases: object [http://docs.python.org/library/functions.html#object]

Base class that provides commonly used features for response handling

	
REQUIRED_DATA = []

	

	
exception avocado.core.restclient.response.InvalidJSONError

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

Data given to a loader/decoder is not valid JSON

	
exception avocado.core.restclient.response.InvalidResultResponseError

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

Returned result response does not conform to expectation

Even though the result may be a valid json, it may not have the required
or expected information that would normally be sent by avocado-server.

	
class avocado.core.restclient.response.ResultResponse(json_data)

	Bases: avocado.core.restclient.response.BaseResponse

Provides a wrapper around an ideal result response

This class should be instantiated with the JSON data received from an
avocado-server, and will check if the required data members are present
and thus the response is well formed.

	
REQUIRED_DATA = ['count', 'next', 'previous', 'results']

	

Module contents

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Internal (Core) APIs

 	avocado.core.restclient package

avocado.core.restclient.cli package

Subpackages

	avocado.core.restclient.cli.actions package
	Submodules

	avocado.core.restclient.cli.actions.base module

	avocado.core.restclient.cli.actions.server module

	Module contents

	avocado.core.restclient.cli.args package
	Submodules

	avocado.core.restclient.cli.args.base module

	avocado.core.restclient.cli.args.server module

	Module contents

Submodules

avocado.core.restclient.cli.app module

This is the main entry point for the rest client cli application

	
class avocado.core.restclient.cli.app.App

	Bases: object [http://docs.python.org/library/functions.html#object]

Base class for CLI application

Initializes a new app instance.

This class is intended both to be used by the stock client application
and also to be reused by custom applications. If you want, say, to
limit the amount of command line actions and its arguments, you can
simply supply another argument parser class to this constructor. Of
course another way to customize it is to inherit from this and modify
its members at will.

	
dispatch_action()

	Calls the actions that was specified via command line arguments.

This involves loading the relevant module file.

	
initialize_connection()

	Initialize the connection instance

	
run()

	Main entry point for application

avocado.core.restclient.cli.parser module

REST client application command line parsing

	
class avocado.core.restclient.cli.parser.Parser(**kwargs)

	Bases: argparse.ArgumentParser [http://docs.python.org/library/argparse.html#argparse.ArgumentParser]

The main CLI Argument Parser.

Initializes a new parser

	
add_arguments_on_all_modules(prefix='avocado.core.restclient.cli.args')

	Add arguments that are present on all Python modules at a given prefix

	Parameters:	prefix – a Python module namespace

	
add_arguments_on_module(name, prefix)

	Add arguments that are present on a given Python module

	Parameters:	name – the name of the Python module, without the namespace

Module contents

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Internal (Core) APIs

 	avocado.core.restclient package

 	avocado.core.restclient.cli package

avocado.core.restclient.cli.actions package

Submodules

avocado.core.restclient.cli.actions.base module

	
avocado.core.restclient.cli.actions.base.action(function)

	Simple function that marks functions as CLI actions

	Parameters:	function – the function that will receive the CLI action mark

avocado.core.restclient.cli.actions.server module

Module that implements the actions for the CLI App when the job toplevel
command is used

	
avocado.core.restclient.cli.actions.server.list_brief(app)

	Shows the server API list

	
avocado.core.restclient.cli.actions.server.status(app)

	Shows the server status

Module contents

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Internal (Core) APIs

 	avocado.core.restclient package

 	avocado.core.restclient.cli package

avocado.core.restclient.cli.args package

Submodules

avocado.core.restclient.cli.args.base module

This module has base action arguments that are used on other top level commands

These top level commands import these definitions for uniformity and
consistency sake

avocado.core.restclient.cli.args.server module

This module has actions for the server command

Module contents

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Extension (plugin) APIs

Extension APIs that may be of interest to plugin writers.

Submodules

avocado.plugins.config module

	
class avocado.plugins.config.Config

	Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘config’ subcommand

	
configure(parser)

	

	
description = 'Shows avocado config keys'

	

	
name = 'config'

	

	
run(args)

	

avocado.plugins.diff module

Job Diff

	
class avocado.plugins.diff.Diff

	Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘diff’ subcommand

	
configure(parser)

	Add the subparser for the diff action.

	Parameters:	parser – Main test runner parser.

	
description = 'Shows the difference between 2 jobs.'

	

	
name = 'diff'

	

	
run(args)

	

avocado.plugins.distro module

	
avocado.plugins.distro.DISTRO_PKG_INFO_LOADERS = {'deb': <class 'avocado.plugins.distro.DistroPkgInfoLoaderDeb'>, 'rpm': <class 'avocado.plugins.distro.DistroPkgInfoLoaderRpm'>}

	the type of distro that will determine what loader will be used

	
class avocado.plugins.distro.Distro

	Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘distro’ subcommand

	
configure(parser)

	

	
description = 'Shows detected Linux distribution'

	

	
get_output_file_name(args)

	Adapt the output file name based on given args

It’s not uncommon for some distros to not have a release number, so
adapt the output file name to that

	
name = 'distro'

	

	
run(args)

	

	
class avocado.plugins.distro.DistroDef(name, version, release, arch)

	Bases: avocado.utils.distro.LinuxDistro

More complete information on a given Linux Distribution

Can and should include all the software packages that ship with the distro,
so that an analysis can be made on whether a given package that may be
responsible for a regression is part of the official set or an external
package.

	
software_packages = None

	All the software packages that ship with this Linux distro

	
software_packages_type = None

	A simple text that denotes the software type that makes this distro

	
to_dict()

	Returns the representation as a dictionary

	
to_json()

	Returns the representation of the distro as JSON

	
class avocado.plugins.distro.DistroPkgInfoLoader(path)

	Bases: object [http://docs.python.org/library/functions.html#object]

Loads information from the distro installation tree into a DistroDef

It will go through all package files and inspect them with specific
package utilities, collecting the necessary information.

	
get_package_info(path)

	Returns information about a given software package

Should be implemented by classes inheriting from
DistroDefinitionLoader.

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – path to the software package file

	Returns:	tuple with name, version, release, checksum and arch

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
get_packages_info()

	This method will go through each file, checking if it’s a valid
software package file by calling is_software_package() and
calling load_package_info() if it’s so.

	
is_software_package(path)

	Determines if the given file at path is a software package

This check will be used to determine if load_package_info()
will be called for file at path. This method should be
implemented by classes inheriting from DistroPkgInfoLoader and
could be as simple as checking for a file suffix.

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – path to the software package file

	Returns:	either True if the file is a valid software package or False
otherwise

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

	
class avocado.plugins.distro.DistroPkgInfoLoaderDeb(path)

	Bases: avocado.plugins.distro.DistroPkgInfoLoader

Loads package information for DEB files

	
get_package_info(path)

	

	
is_software_package(path)

	

	
class avocado.plugins.distro.DistroPkgInfoLoaderRpm(path)

	Bases: avocado.plugins.distro.DistroPkgInfoLoader

Loads package information for RPM files

	
get_package_info(path)

	

	
is_software_package(path)

	Systems needs to be able to run the rpm binary in order to fetch
information on package files. If the rpm binary is not available
on this system, we simply ignore the rpm files found

	
class avocado.plugins.distro.SoftwarePackage(name, version, release, checksum, arch)

	Bases: object [http://docs.python.org/library/functions.html#object]

Definition of relevant information on a software package

	
to_dict()

	Returns the representation as a dictionary

	
to_json()

	Returns the representation of the distro as JSON

	
avocado.plugins.distro.load_distro(path)

	Loads the distro from an external file

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – the location for the input file

	Returns:	a dict with the distro definition data

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
avocado.plugins.distro.load_from_tree(name, version, release, arch, package_type, path)

	Loads a DistroDef from an installable tree

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – a short name that precisely distinguishes this Linux
Distribution among all others.

	version (str [http://docs.python.org/library/functions.html#str]) – the major version of the distribution. Usually this
is a single number that denotes a large development
cycle and support file.

	release (str [http://docs.python.org/library/functions.html#str]) – the release or minor version of the distribution.
Usually this is also a single number, that is often
omitted or starts with a 0 when the major version
is initially release. It’s often associated with a
shorter development cycle that contains incremental
a collection of improvements and fixes.

	arch (str [http://docs.python.org/library/functions.html#str]) – the main target for this Linux Distribution. It’s common
for some architectures to ship with packages for
previous and still compatible architectures, such as it’s
the case with Intel/AMD 64 bit architecture that support
32 bit code. In cases like this, this should be set to
the 64 bit architecture name.

	package_type (str [http://docs.python.org/library/functions.html#str]) – one of the available package info loader types

	path (str [http://docs.python.org/library/functions.html#str]) – top level directory of the distro installation tree files

	
avocado.plugins.distro.save_distro(linux_distro, path)

	Saves the linux_distro to an external file format

	Parameters:	
	linux_distro (DistroDef) – an DistroDef instance

	path (str [http://docs.python.org/library/functions.html#str]) – the location for the output file

	Returns:	None

avocado.plugins.docker module

Run the job inside a docker container.

	
class avocado.plugins.docker.Docker

	Bases: avocado.core.plugin_interfaces.CLI

Run the job inside a docker container

	
configure(parser)

	

	
description = 'Run tests inside docker container'

	

	
name = 'docker'

	

	
run(args)

	

	
class avocado.plugins.docker.DockerRemoter(dkrcmd, image, options, name=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

Remoter object similar to avocado.core.remoter which implements subset
of the commands on docker container.

Executes docker container and attaches it.

	Parameters:	
	dkrcmd – The base docker binary (or command)

	image – docker image to be used in this instance

	
cleanup()

	Stop the container and remove it

	
close()

	Safely postprocess the container

	Note:	It won’t remove the container, you need to do it manually

	
get_cid()

	Return this remoter’s container ID

	
makedir(remote_path)

	Create a directory on the container

	Warning:	No other process must be running on foreground

	Parameters:	remote_path – the remote path to create.

	
receive_files(local_path, remote_path)

	Receive files from the container

	
run(command, ignore_status=False, quiet=None, timeout=60)

	Run command inside the container

	
send_files(local_path, remote_path)

	Send files to the container

	
class avocado.plugins.docker.DockerTestRunner(job, test_result)

	Bases: avocado.core.remote.runner.RemoteTestRunner

Test runner which runs the job inside a docker container

	
remote_test_dir = '/avocado_remote_test_dir'

	

	
setup()

	

	
tear_down()

	

avocado.plugins.envkeep module

	
class avocado.plugins.envkeep.EnvKeep

	Bases: avocado.core.plugin_interfaces.CLI

Keep environment variables on remote executions

	
configure(parser)

	

	
description = 'Keep variables in remote environment'

	

	
name = 'envkeep'

	

	
run(args)

	

avocado.plugins.exec_path module

Libexec PATHs modifier

	
class avocado.plugins.exec_path.ExecPath

	Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘exec-path’ subcommand

	
description = 'Returns path to avocado bash libraries and exits.'

	

	
name = 'exec-path'

	

	
run(args)

	Print libexec path and finish

	Parameters:	args – Command line args received from the run subparser.

avocado.plugins.gdb module

Run tests with GDB goodies enabled.

	
class avocado.plugins.gdb.GDB

	Bases: avocado.core.plugin_interfaces.CLI

Run tests with GDB goodies enabled

	
configure(parser)

	

	
description = "GDB options for the 'run' subcommand"

	

	
name = 'gdb'

	

	
run(args)

	

avocado.plugins.jobscripts module

	
class avocado.plugins.jobscripts.JobScripts

	Bases: avocado.core.plugin_interfaces.JobPre, avocado.core.plugin_interfaces.JobPost

	
description = 'Runs scripts before/after the job is run'

	

	
name = 'jobscripts'

	

	
post(job)

	

	
pre(job)

	

avocado.plugins.journal module

Journal Plugin

	
class avocado.plugins.journal.Journal

	Bases: avocado.core.plugin_interfaces.CLI

Test journal

	
configure(parser)

	

	
description = "Journal options for the 'run' subcommand"

	

	
name = 'journal'

	

	
run(args)

	

	
class avocado.plugins.journal.ResultJournal(job=None)

	Bases: avocado.core.result.Result

Test Result Journal class.

This class keeps a log of the test updates: started running, finished, etc.
This information can be forwarded live to an avocado server and provide
feedback to users from a central place.

Creates an instance of ResultJournal.

	Parameters:	job – an instance of avocado.core.job.Job.

	
end_test(state)

	

	
end_tests()

	

	
lazy_init_journal(state)

	

	
start_test(state)

	

avocado.plugins.jsonresult module

JSON output module.

	
class avocado.plugins.jsonresult.JSONCLI

	Bases: avocado.core.plugin_interfaces.CLI

JSON output

	
configure(parser)

	

	
description = "JSON output options for 'run' command"

	

	
name = 'json'

	

	
run(args)

	

	
class avocado.plugins.jsonresult.JSONResult

	Bases: avocado.core.plugin_interfaces.Result

	
description = 'JSON result support'

	

	
name = 'json'

	

	
render(result, job)

	

avocado.plugins.list module

	
class avocado.plugins.list.List

	Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘list’ subcommand

	
configure(parser)

	Add the subparser for the list action.

	Parameters:	parser – Main test runner parser.

	
description = 'List available tests'

	

	
name = 'list'

	

	
run(args)

	

	
class avocado.plugins.list.TestLister(args)

	Bases: object [http://docs.python.org/library/functions.html#object]

Lists available test modules

	
list()

	

avocado.plugins.multiplex module

	
class avocado.plugins.multiplex.Multiplex(*args, **kwargs)

	Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘multiplex’ subcommand

	
configure(parser)

	

	
description = 'Tool to analyze and visualize test variants and params'

	

	
name = 'multiplex'

	

	
run(args)

	

avocado.plugins.plugins module

Plugins information plugin

	
class avocado.plugins.plugins.Plugins

	Bases: avocado.core.plugin_interfaces.CLICmd

Plugins information

	
configure(parser)

	

	
description = 'Displays plugin information'

	

	
name = 'plugins'

	

	
run(args)

	

avocado.plugins.remote module

Run tests on a remote machine.

	
class avocado.plugins.remote.Remote

	Bases: avocado.core.plugin_interfaces.CLI

Run tests on a remote machine

	
configure(parser)

	

	
description = "Remote machine options for 'run' subcommand"

	

	
name = 'remote'

	

	
run(args)

	

avocado.plugins.replay module

	
class avocado.plugins.replay.Replay

	Bases: avocado.core.plugin_interfaces.CLI

Replay a job

	
configure(parser)

	

	
description = "Replay options for 'run' subcommand"

	

	
load_config(resultsdir)

	

	
name = 'replay'

	

	
run(args)

	

	
avocado.plugins.replay.ignore_call(*args, **kwargs)

	Accepts anything and does nothing

avocado.plugins.run module

Base Test Runner Plugins.

	
class avocado.plugins.run.Run

	Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘run’ subcommand

	
configure(parser)

	Add the subparser for the run action.

	Parameters:	parser – Main test runner parser.

	
description = 'Runs one or more tests (native test, test alias, binaryor script)'

	

	
name = 'run'

	

	
run(args)

	Run test modules or simple tests.

	Parameters:	args – Command line args received from the run subparser.

avocado.plugins.sysinfo module

System information plugin

	
class avocado.plugins.sysinfo.SysInfo

	Bases: avocado.core.plugin_interfaces.CLICmd

Collect system information

	
configure(parser)

	Add the subparser for the run action.

	Parameters:	parser – Main test runner parser.

	
description = 'Collect system information'

	

	
name = 'sysinfo'

	

	
run(args)

	

avocado.plugins.tap module

TAP output module.

	
class avocado.plugins.tap.TAP

	Bases: avocado.core.plugin_interfaces.CLI

TAP Test Anything Protocol output avocado plugin

	
configure(parser)

	

	
description = 'TAP - Test Anything Protocol results'

	

	
name = 'TAP'

	

	
run(args)

	

	
class avocado.plugins.tap.TAPResult(job, force_output_file=None)

	Bases: avocado.core.result.Result

TAP output class

	
end_test(state)

	Log the test status and details

	
end_tests()

	

	
start_tests()

	Log the test plan

avocado.plugins.vm module

Run tests on Virtual Machine.

	
class avocado.plugins.vm.VM

	Bases: avocado.core.plugin_interfaces.CLI

Run tests on a Virtual Machine

	
configure(parser)

	

	
description = "Virtual Machine options for 'run' subcommand"

	

	
name = 'vm'

	

	
run(args)

	

avocado.plugins.wrapper module

	
class avocado.plugins.wrapper.Wrapper

	Bases: avocado.core.plugin_interfaces.CLI

Implements the ‘–wrapper’ flag for the ‘run’ subcommand

	
configure(parser)

	

	
description = "Implements the '--wrapper' flag for the 'run' subcommand"

	

	
name = 'wrapper'

	

	
run(args)

	

avocado.plugins.xunit module

xUnit module.

	
class avocado.plugins.xunit.XUnitCLI

	Bases: avocado.core.plugin_interfaces.CLI

xUnit output

	
configure(parser)

	

	
description = 'xUnit output options'

	

	
name = 'xunit'

	

	
run(args)

	

	
class avocado.plugins.xunit.XUnitResult

	Bases: avocado.core.plugin_interfaces.Result

	
PRINTABLE = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~\n\r '

	

	
UNKNOWN = '<unknown>'

	

	
description = 'XUnit result support'

	

	
name = 'xunit'

	

	
render(result, job)

	

avocado.plugins.yaml_to_mux module

Multiplexer plugin to parse yaml files to params

	
class avocado.plugins.yaml_to_mux.ListOfNodeObjects

	Bases: list [http://docs.python.org/library/functions.html#list]

Used to mark list as list of objects from whose node is going to be created

	
class avocado.plugins.yaml_to_mux.Value

	Bases: tuple

Used to mark values to simplify checking for node vs. value

	
class avocado.plugins.yaml_to_mux.YamlToMux

	Bases: avocado.core.plugin_interfaces.CLI

Registers callback to inject params from yaml file to the

	
configure(parser)

	Configures “run” and “multiplex” subparsers

	
description = "YamlToMux options for the 'run' subcommand"

	

	
name = 'yaml_to_mux'

	

	
run(args)

	

	
avocado.plugins.yaml_to_mux.create_from_yaml(paths, debug=False)

	Create tree structure from yaml-like file
:param fileobj: File object to be processed
:raise SyntaxError: When yaml-file is corrupted
:return: Root of the created tree structure

Module contents

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

Release Notes

The following pages summarize what is new in Avocado:

	42.0 Stranger Things

	41.0 Outlander

	40.0 Dr Who

	39.0 The Hateful Eight

	38.0 Love, Ken

	37.0 Trabant vs. South America

	36.0 LTS

	35.0 Mr. Robot

	0.34.0 The Hour of the Star

	0.33.0 Lemonade Joe or Horse Opera

	0.32.0 Road Runner

	0.31.0 Lucky Luke

	0.30.0 Jimmy’s Hall

	0.29.0 Steven Universe

	0.28.0 Jára Cimrman, The Investigation of the Missing Class Register

	0.27.1

	0.27.0 Terminator: Genisys

	0.26.0 The Office

	0.25.0 Blade

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

42.0 Stranger Things

The Avocado team is proud to present another release: Avocado version
42.0, aka, “Stranger Things”, is now available!

The major changes introduced on this version are listed below,
roughly categorized into major topics and intended audience:

Users/Test Writers

	Multiplexer: it now defines an API to inject and merge data into
the multiplexer tree. With that, it’s now possible to come up
with various mechanisms to feed data into the Multiplexer. The
standard way to do so continues to be by YAML files, which is now
implemented in the avocado.plugins.yaml_to_mux plugin module.
The –multiplex option, which used to load YAML files into the
multiplexer is now deprecated in favor of –mux-yaml.

	Docker improvements: Avocado will now name the container accordingly
to the job it’s running. Also, it not allows generic Docker options
to be passed by using –docker-options on the Avocado command line.

	It’s now possible to disable plugins by using the configuration file.
This is documented at Disabling a plugin.

	avocado.utils.iso9660: this utils module received a lot of
TLC and it now provides a more complete standard API across all
backend implementations. Previously, only the mount based backend
implementation would support the mnt_dir API, which would point
to a filesystem location where the contents of the ISO would be
available. Now all other backends can support that API, given that
requirements (such as having the right privileges) are met.

	Users of the avocado.utils.process module will now be able
to access the process ID in the
avocado.utils.process.CmdResult

	Users of the avocado.utils.build module will find an
improved version of avocado.utils.build.make() which will now
return the make process exit status code.

	Users of the virtual machine plugin (--vm-domain and related
options) will now receive better messages when errors occur.

Documentation

	Added section on how to use custom Docker images with user’s own
version of Avocado (or anything else for that matter).

	Added section on how to install Avocado using standard OpenSUSE
packages.

	Added section on unittest [http://docs.python.org/library/unittest.html#module-unittest] compatibility limitations and
caveats.

	A link to Scylla Clusters tests has been added to the list of
Avocado test repos.

	Added section on how to install Avocado by using standard Python
packages.

Developers

	The make develop target will now activate in-tree optional plugins,
such as the HTML report plugin.

	The selftests/run script, usually called as part of make check,
will now fail at the first failure (by default). This is controlled
by the SELF_CHECK_CONTINUOUS environment variable.

	The make check target can also run tests in parallel, which can be
enabled by setting the environment variable AVOCADO_PARALLEL_CHECK.

Bugfixes

	An issue where KeyboardInterrupts would be caught by the
journalctl run as part of sysinfo was fixed with a workaround.
The root cause appears to be located in the
avocado.utils.process library, and a task is already on
track to verify that possible bug.

	avocado.util.git module had an issue where git executions
would generate content that would erroneously be considered as
part of the output check mechanism.

Internal improvements

	Selftests are now run while building Enterprise Linux 6 packages.
Since most Avocado developers use newer platforms for development,
this should make Avocado more reliable for users of those older
platforms.

For more information, please check out the complete
Avocado changelog [https://github.com/avocado-framework/avocado/compare/41.0...42.0].

Release Meeting

The Avocado release meetings are now open to the community via
Hangouts on Air. The meetings are recorded and made available on the
Avocado Test Framework YouTube channel [https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA].

For this release, you can watch the meeting on this link [https://www.youtube.com/watch?v=LlrXKEOxeAY].

Sprint theme: https://trello.com/c/icVc5Szx/851-sprint-theme-stranger-things

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

41.0 Outlander

The Avocado team is proud to present another release:
Avocado version 41.0, aka, “Outlander”, is now available!

The major changes introduced on this version are listed below,
roughly categorized into major topics and intended audience:

Users/Test Writers

	Multiplex: remove the -s (system-wide) shortcut to avoid
confusion with silent from main apps.

	New avocado.utils.linux_modules.check_kernel_config()
method, with which users can check if a kernel configuration is not
set, a module or built-in.

	Show link to file which failed to be processed by sysinfo.

	New path key type for settings that auto-expand tilde notation,
that is, when using avocado.core.settings.Settings.get_value()
you can get this special value treatment.

	The automatic VM IP detection that kicks in when one uses
–vm-domain without a matching –vm-hostname, now uses a more
reliable method (libvirt/qemu-gust-agent query). On the other
hand, the QEMU guest agent is now required if you intend to omit
the VM IP/hostname.

	Warn users when sysinfo configuration files are not present, and
consequently no sysinfo is going to be collected.

	Set LC_ALL=C by default on sysinfo collection to simplify
avocado diff comparison between different machines. It can be
tweaked in the config file (locale option under
sysinfo.collect).

	Remove deprecated option –multiplex-files.

	List result plugins (JSON, XUnit, HTML) in avocado plugins
command output.

Documentation

	Mention to the community maintained repositories.

	Add GIT workflow to the contribution guide.

Developers

	New make check-long target to run long tests. For example, the
new FileLockTest.

	New make variables target to display Makefile variables.

	Plugins: add optional plugins directory optional_plugins. This
also adds all directories to be found under optional_plugins to
the list of candidate plugins when running make clean or make
link.

Bugfixes

	Fix undefined name error avocado.core.remote.runner.

	Ignore r when checking for avocado in remote executions.

	Skip file if UnicodeDecodeError is raised when collecting
sysinfo.

	Sysinfo: respect package collection on/off configuration.

	Use -y in lvcreate to ignore warnings
avocado.utils.lv_utils.

	Fix crash in avocado.core.tree when printing non-string
values.

	setup.py: fix the virtualenv detection so readthedocs.org can
properly probe Avocado’s version.

Internal improvements

	Cleanup runner->multiplexer API

	Replay re-factoring, renamed avocado.core.replay to
avocado.core.jobdata.

	Partition utility class defaults to ext2. We documented that and
reinforced in the accompanying unittests.

	Unittests for avocado.utils.partition has now more specific
checks for the conditions necessary to run the Partition tests
(sudo, mkfs.ext2 binary).

	Several Makefile improvements.

For more information, please check out the complete
Avocado changelog [https://github.com/avocado-framework/avocado/compare/40.0...41.0].

Release Meeting

The Avocado release meetings are now open to the community via
Hangouts on Air. The meetings are recorded and made available on the
Avocado Test Framework YouTube channel [https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA].

For this release, you can watch the meeting on this link [https://www.youtube.com/watch?v=kGNiOk8UrMs].

Sprint theme: https://trello.com/c/5oShOR1D/812-sprint-theme-outlander

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

40.0 Dr Who

The Avocado team is proud to present another release:
Avocado version 40.0, aka, “Dr Who”, is now available!

The major changes introduced on this version are listed below.

	The introduction of a tool that generated a diff-like report of two
jobs. For more information on this feature, please check out its
own documentation.

	The avocado.utils.process library has been enhanced by adding
the avocado.utils.process.SubProcess.get_pid() method, and also by
logging the command name, status and execution time when verbose
mode is set.

	The introduction of a rr [http://rr-project.org] based wrapper.
With such a wrapper, it’s possible to transparently record the
process state (when executed via the avocado.utils.process
APIs), and deterministically replay them later.

	The coredump generation contrib scripts will check if the user
running Avocado is privileged to actually generate those dumps.
This means that it won’t give errors in the UI about failures on
pre/post scripts, but will record that in the appropriate job log.

	BUGFIX: The --remote-no-copy command line option, when added to the
--remote-* options that actually trigger the remote execution of
tests, will now skip the local test discovery altogether.

	BUGFIX: The use of the asset fetcher by multiple avocado executions
could result in a race condition. This is now fixed, backed by a
file based utility lock library: avocado.utils.filelock.

	BUGFIX: The asset fetcher will now properly check the hash on
file: based URLs.

	BUGFIX: A busy loop in the avocado.utils.process library that
was reported by our users was promptly fixed.

	BUGFIX: Attempts to install Avocado on bare bones environments, such
as virtualenvs, won’t fail anymore due to dependencies required at
setup.py execution time. Of course Avocado still requires some
external Python libraries, but these will only be required after
installation. This should let users to pip install avocado-framework
successfully.

For more information, please check out the complete
Avocado changelog [https://github.com/avocado-framework/avocado/compare/39.0...40.0].

Release Meeting

The Avocado release meetings are now open to the community via
Hangouts on Air. The meetings are recorded and made available on the
Avocado Test Framework YouTube channel [https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA].

For this release, you can watch the meeting on this link [https://www.youtube.com/watch?v=bWL8JHYN_ec].

Sprint theme: https://trello.com/c/P1Ps7T0F/782-sprint-theme-dr-who

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

39.0 The Hateful Eight

The Avocado team is proud to present another incremental release:
version 39.0, aka, “The Hateful Eight”, is now available!

The major changes introduced on this version are listed below.

	Support for running tests in Docker container. Now, in addition to
running tests on a (libvirt based) Virtual Machine or on a remote host,
you can now run tests in transient Docker containers. The usage is as
simple as:

$ avocado run mytests.py --docker ldoktor/fedora-avocado

The container will be started, using ldoktor/fedora-avocado as
the image. This image contains a Fedora based system with Avocado
already installed, and it’s provided at the official Docker hub.

	Introduction of the “Fail Fast” feature.

By running a job with the --failfast flag, the job will be
interrupted after the very first test failure. If your job only
makes sense if it’s a complete PASS, this feature can save you a lot
of time.

	Avocado supports replaying previous jobs, selected by using their
Job IDs. Now, it’s also possible to use the special keyword
latest, which will cause Avocado to rerun the very last job.

	Python’s standard signal handling is restored for SIGPIPE, and thus
for all tests running on Avocado.

In previous releases, Avocado introduced a change that set the
default handler to SIGPIPE, which caused the application to be
terminated. This seemed to be the right approach when testing how
the Avocado app would behave on broken pipes on the command line,
but it introduced side effects to a lot of Python code. Instead of
exceptions, the affected Python code would receive the signal themselves.

This is now reverted to the Python standard, and the signal behavior
of Python based tests running on Avocado should not surprise anyone.

	The project release notes are now part of the official
documentation. That means that users can quickly find when a given
change was introduced.

Together with those changes listed, a total of 38 changes made into
this release. For more information, please check out the complete
Avocado changelog [https://github.com/avocado-framework/avocado/compare/38.0...39.0].

Release Meeting

The Avocado release meetings are now open to the community via
Hangouts on Air. The meetings are recorded and made available on the
Avocado Test Framework YouTube channel [https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA].

For this release, you can watch the meeting on this link [https://www.youtube.com/watch?v=GotEH7SmHSw].

Sprint theme: https://trello.com/c/nEiT7IjJ/755-sprint-theme-the-hateful-eight

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

38.0 Love, Ken

You guessed it right: this is another Avocado release announcement:
release 38.0, aka “Love, Ken”, is now out!

Another development cycle has just finished, and our community will
receive this new release containing a nice assortment of bug fixes and
new features.

	The download of assets in tests now allow for an expiration time.
This means that tests that need to download any kind of external
asset, say a tarball, can now automatically benefit from the
download cache, but can also keep receiving new versions
automatically.

Suppose your asset uses an asset named myproject-daily.tar.bz2,
and that your test runs 50 times a day. By setting the expire time
to 1d (1 day), your test will benefit from cache on most runs, but
will still fetch the new version when the 24 hours from the
first download have passed.

For more information, please check out the
documentation [http://avocado-framework.readthedocs.io/en/38.0/WritingTests.html]
on the expire parameter to the fetch_asset() method.

	Environment variables can be propagated into tests running on remote
systems. It’s a known fact that one way to influence application behavior,
including test, is to set environment variables. A command line such as:

$ MYAPP_DEBUG=1 avocado run myapp_test.py

Will work as expected on a local system. But Avocado also allows
running tests on remote machines, and up until now, it has been
lacking a way to propagate environment variables to the remote
system.

Now, you can use:

$ MYAPP_DEBUG=1 avocado run --env-keep MYAPP_DEBUG \
 --remote-host test-machine myapp_test.py

	The plugin interfaces have been moved into the
avocado.core.plugin_interfaces module. This means that plugin
writers now have to import the interface definitions this namespace,
example:

...
from avocado.core.plugin_interfaces import CLICmd

class MyCommand(CLICmd):
...

This is a way to keep ourselves honest, and say that there’s no
difference from plugin interfaces to Avocado’s core implementation,
that is, they may change at will. For greater stability, one should
be tracking the LTS releases.

Also, it effectively makes all plugins the same, whether they’re
implemented and shipped as part of Avocado, or as part of external
projects.

	A contrib script for running kvm-unit-tests. As some people are
aware, Avocado has indeed a close relation to virtualization
testing. Avocado-VT is one obvious example, but there are other
virtualization related test suites can Avocado can run.

This release adds a contrib script that will fetch, download,
compile and run kvm-unit-tests using Avocado’s external runner
feature. This gives results in a better granularity than the
support that exists in Avocado-VT, which gives only a single
PASS/FAIL for the entire test suite execution.

For more information, please check out the Avocado changelog [https://github.com/avocado-framework/avocado/compare/37.0...38.0].

Avocado-VT

Also, while we focused on Avocado, let’s also not forget that
Avocado-VT maintains it’s own fast pace of incoming niceties.

	s390 support: Avocado-VT is breaking into new grounds, and now has
support for the s390 architecture. Fedora 23 for s390 has been added
as a valid guest OS, and s390-virtio has been added as a new machine
type.

	Avocado-VT is now more resilient against failures to persist its
environment file, and will only give warnings instead of errors when
it fails to save it.

	An improved implementation of the “job lock” plugin, which prevents
multiple Avocado jobs with VT tests to run simultaneously. Since
there’s no finer grained resource locking in Avocado-VT, this is a
global lock that will prevent issues such as image corruption when
two jobs are run at the same time.

This new implementation will now check if existing lock files are
stale, that is, they are leftovers from previous run. If the
processes associated with these files are not present, the stale
lock files are deleted, removing the need to clean them up manually.
It also outputs better debugging information when failures to
acquire lock.

The complete list of changes to Avocado-VT are available on
Avocado-VT changelog [https://github.com/avocado-framework/avocado-vt/compare/37.0...38.0].

Miscellaneous

While not officially part of this release, this development cycle saw
the introduction of new tests on our
avocado-misc-tests [https://github.com/avocado-framework/avocado-misc-tests].
Go check it out!

Finally, since Avocado and Avocado-VT are not newly born anymore, we
decided to update information mentioning KVM-Autotest, virt-test on so
on around the web. This will hopefully redirect new users to the Avocado
community and avoid confusion.

Happy hacking and testing!

Sprint Theme: https://trello.com/c/Y6IIFXBS/732-sprint-theme

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

37.0 Trabant vs. South America

This is another proud announcement: Avocado release 37.0, aka “Trabant
vs. South America”, is now out!

This release is yet another collection of bug fixes and some new
features. Along with the same changes that made the 36.0lts
release[1], this brings the following additional changes:

	TAP[2] version 12 support, bringing better integration with other
test tools that accept this streaming format as input.

	Added niceties on Avocado’s utility libraries “build” and “kernel”,
such as automatic parallelism and resource caching. It makes tests
such as “linuxbuild.py” (and your similar tests) run up to 10 times
faster.

	Fixed an issue where Avocado could leave processes behind after the
test was finished.

	Fixed a bug where the configuration for tests data directory would
be ignored.

	Fixed a bug where SIMPLE tests would not properly exit with WARN
status.

For a complete list of changes please check the Avocado changelog[3].

For Avocado-VT, please check the full Avocado-VT changelog[4].

Happy hacking and testing!

[1] https://www.redhat.com/archives/avocado-devel/2016-May/msg00025.html

[2] https://en.wikipedia.org/wiki/Test_Anything_Protocol

[3] https://github.com/avocado-framework/avocado/compare/35.0...37.0

[4] https://github.com/avocado-framework/avocado-vt/compare/35.0...37.0

[5] http://avocado-framework.readthedocs.io/en/37.0/GetStartedGuide.html#installing-avocado

Sprint Theme: https://trello.com/c/XbIUqU1Y/673-sprint-theme

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

36.0 LTS

This is a very proud announcement: Avocado release 36.0lts, our very
first “Long Term Stability” release, is now out!

LTS in a nutshell

This release marks the beginning of a special cycle that will last for
18 months. Avocado usage in production environments should favor the
use of this LTS release, instead of non-LTS releases.

Bug fixes will be provided on the “36lts”[1] branch until, at least,
September 2017. Minor releases, such as “36.1lts”, “36.2lts” an so
on, will be announced from time to time, incorporating those stability
related improvements.

Keep in mind that no new feature will be added. For more information,
please read the “Avocado Long Term Stability” RFC[2].

Changes from 35.0

As mentioned in the release notes for the previous release (35.0),
only bug fixes and other stability related changes would be added to
what is now 36.0lts. For the complete list of changes, please check
the GIT repo change log[3].

Install avocado

The Avocado LTS packages are available on a separate repository, named
“avocado-lts”. These repositories are available for Fedora 22, Fedora
23, EPEL 6 and EPEL 7.

Updated ”.repo” files are available on the usual locations:

	https://repos-avocadoproject.rhcloud.com/static/avocado-fedora.repo

	https://repos-avocadoproject.rhcloud.com/static/avocado-el.repo

Those repo files now contain definitions for both the “LTS” and
regular repositories. Users interested in the LTS packages, should
disable the regular repositories and enable the “avocado-lts” repo.

Instructions are available in our documentation on how to install
either with packages or from source[4].

Happy hacking and testing!

[1] https://github.com/avocado-framework/avocado/tree/36lts

[2] https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html

[3] https://github.com/avocado-framework/avocado/compare/35.0...36.0lts

[4] http://avocado-framework.readthedocs.io/en/36lts/GetStartedGuide.html#installing-avocado

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

35.0 Mr. Robot

This is another proud announcement: Avocado release 35.0, aka “Mr. Robot”,
is now out!

This release, while a “regular” release, will also serve as a beta for
our first “long term stability” (aka “lts”) release. That means that
the next release, will be version “36.0lts” and will receive only bug
fixes and minor improvements. So, expect release 35.0 to be pretty
much like “36.0lts” feature-wise. New features will make into the
“37.0” release, to be released after “36.0lts”. Read more about the
details on the specific RFC[9].

The main changes in Avocado for this release are:

	A big round of fixes and on machine readable output formats, such
as xunit (aka JUnit) and JSON. The xunit output, for instance,
now includes tests with schema checking. This should make sure
interoperability is even better on this release.

	Much more robust handling of test references, aka test URLs.
Avocado now properly handles very long test references, and also
test references with non-ascii characters.

	The avocado command line application now provides richer exit
status[1]. If your application or custom script depends on the
avocado exit status code, you should be fine as avocado still
returns zero for success and non-zero for errors. On error
conditions, though, the exit status code are richer and made of
combinable (ORable) codes. This way it’s possible to detect that,
say, both a test failure and a job timeout occurred in a single
execution.

	[SECURITY RELATED] The remote execution of tests (including in
Virtual Machines) now allows for proper checks of host keys[2].
Without these checks, avocado is susceptible to a man-in-the-middle
attack, by connecting and sending credentials to the wrong machine.
This check is disabled by default, because users depend on this
behavior when using machines without any prior knowledge such as
cloud based virtual machines. Also, a bug in the underlying SSH
library may prevent existing keys to be used if these are in ECDSA
format[3]. There’s an automated check in place to check for the
resolution of the third party library bug. Expect this feature to
be enabled by default in the upcoming releases.

	Pre/Post Job hooks. Avocado now defines a proper interface for
extension/plugin writers to execute actions while a Job is runnning.
Both Pre and Post hooks have access to the Job state (actually, the
complete Job instance). Pre job hooks are called before tests are
run, and post job hooks are called at the very end of the job (after
tests would have usually finished executing).

	Pre/Post job scripts[4]. As a feature built on top of the Pre/Post job
hooks described earlier, it’s now possible to put executable scripts
in a configurable location, such as /etc/avocado/scripts/job/pre.d
and have them called by Avocado before the execution of tests. The
executed scripts will receive some information about the job via
environment variables[5].

	The implementation of proper Test-IDs[6] in the test result
directory.

Also, while not everything is (yet) translated into code, this release
saw various and major RFCs, which are definitely shaping the future of
Avocado. Among those:

	Introduce proper test IDs[6]

	Pre/Post test hooks[7]

	Multi-stream tests[8]

	Avocado maintainability and integration with avocado-vt[9]

	Improvements to job status (completely implemented)[10]

For a complete list of changes please check the Avocado changelog[11].
For Avocado-VT, please check the full Avocado-VT changelog[12].

Install avocado

Instructions are available in our documentation on how to install
either with packages or from source[13].

Updated RPM packages are be available in the project repos for
Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Packages

As a heads up, we still package the latest version of the various
Avocado sub projects, such as the very popular Avocado-VT and the
pretty much experimental Avocado-Virt and Avocado-Server projects.

For the upcoming releases, there will be changes in our package
offers, with a greater focus on long term stability packages for
Avocado. Other packages may still be offered as a convenience, or
may see a change of ownership. All in the best interest of our users.
If you have any concerns or questions, please let us know.

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/35.0/ResultFormats.html#exit-codes

[2] https://github.com/avocado-framework/avocado/blob/35.0/etc/avocado/avocado.conf#L41

[3] https://github.com/avocado-framework/avocado/blob/35.0/selftests/functional/test_thirdparty_bugs.py#L17

[4] http://avocado-framework.readthedocs.org/en/35.0/ReferenceGuide.html#job-pre-and-post-scripts

[5] http://avocado-framework.readthedocs.org/en/35.0/ReferenceGuide.html#script-execution-environment

[6] https://www.redhat.com/archives/avocado-devel/2016-March/msg00024.html

[7] https://www.redhat.com/archives/avocado-devel/2016-April/msg00000.html

[8] https://www.redhat.com/archives/avocado-devel/2016-April/msg00042.html

[9] https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html

[10] https://www.redhat.com/archives/avocado-devel/2016-April/msg00010.html

[11] https://github.com/avocado-framework/avocado/compare/0.34.0...35.0

[13] https://github.com/avocado-framework/avocado-vt/compare/0.34.0...35.0

[12] http://avocado-framework.readthedocs.org/en/35.0/GetStartedGuide.html#installing-avocado

Sprint Theme: https://trello.com/c/7dWknPDJ/637-sprint-theme

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

0.34.0 The Hour of the Star

Hello to all test enthusiasts out there, specially to those that
cherish, care or are just keeping an eye on the greenest test
framework there is: Avocado release 0.34.0, aka The Hour of the Star,
is now out!

The main changes in Avocado for this release are:

	A complete overhaul of the logging and output implementation. This
means that all Avocado output uses the standard Python logging library
making it very consistent and easy to understand [1].

	Based on the logging and output overhaul, the command line test
runner is now very flexible with its output. A user can choose
exactly what should be output. Examples include application output
only, test output only, both application and test output or any
other combination of the builtin streams. The user visible command
line option that controls this behavior is –show, which is an
application level option, that is, it’s available to all avocado
commands. [2]

	Besides the builtin streams, test writers can use the standard
Python logging API to create new streams. These streams can be shown
on the command line as mentioned before, or persisted automatically
in the job results by means of the –store-logging-stream command
line option. [3][4]

	The new avocado.core.safeloader module, intends to make it easier
to to write new test loaders for various types of Python
code. [5][6]

	Based on the new avocado.core.safeloader module, a contrib script
called avocado-find-unittests, returns the name of
unittest.TestCase based tests found on a given number of Python
source code files. [7]

	Avocado is now able to run its own selftest suite. By leveraging the
avocado-find-unittests contrib script and the External Runner [8]
feature. A Makefile target is available, allowing developers to run
make selfcheck to have the selftest suite run by Avocado. [9]

	Partial Python 3 support. A number of changes were introduced that
allow concurrent Python 2 and 3 support on the same code base. Even
though the support for Python 3 is still incomplete, the avocado
command line application can already run some limited commands at
this point.

	Asset fetcher utility library. This new utility library, and
INSTRUMENTED test feature, allows users to transparently request
external assets to be used in tests, having them cached for later
use. [10]

	Further cleanups in the public namespace of the avocado Test class.

	[BUG FIX] Input from the local system was being passed to remote
systems when running tests with either in remote systems or VMs.

	[BUG FIX] HTML report stability improvements, including better
Unicode handling and support for other versions of the Pystache
library.

	[BUG FIX] Atomic updates of the “latest” job symlink, allows for
more reliable user experiences when running multiple parallel jobs.

	[BUG FIX] The avocado.core.data_dir module now dynamically checks
the configuration system when deciding where the data directory
should be located. This allows for later updates, such as when
giving one extra –config parameter in the command line, to be
applied consistently throughout the framework and test code.

	[MAINTENANCE] The CI jobs now run full checks on each commit on
any proposed PR, not only on its topmost commit. This gives higher
confidence that a commit in a series is not causing breakage that
a later commit then inadvertently fixes.

For a complete list of changes please check the Avocado changelog[11].

For Avocado-VT, please check the full Avocado-VT changelog[12].

Avocado Videos

As yet another way to let users know about what’s available in
Avocado, we’re introducing short videos with very targeted content on
our very own YouTube channel:
https://www.youtube.com/channel/UCP4xob52XwRad0bU_8V28rQ

The first video available demonstrates a couple of new features
related to the advanced logging mechanisms, introduced on this
release: https://www.youtube.com/watch?v=8Ur_p5p6YiQ

Install avocado

Instructions are available in our documentation on how to install
either with packages or from source[13].

Updated RPM packages are be available in the project repos for
Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html

[2] http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html#tweaking-the-ui

[3] http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html#storing-custom-logs

[4] http://avocado-framework.readthedocs.org/en/0.34.0/WritingTests.html#advanced-logging-capabilities

[5] https://github.com/avocado-framework/avocado/blob/0.34.0/avocado/core/safeloader.py

[6] http://avocado-framework.readthedocs.org/en/0.34.0/api/core/avocado.core.html#module-avocado.core.safeloader

[7] https://github.com/avocado-framework/avocado/blob/0.34.0/contrib/avocado-find-unittests

[8] http://avocado-framework.readthedocs.org/en/0.34.0/GetStartedGuide.html#running-tests-with-an-external-runner

[9] https://github.com/avocado-framework/avocado/blob/0.34.0/Makefile#L33

[10] http://avocado-framework.readthedocs.org/en/0.34.0/WritingTests.html#fetching-asset-files

[11] https://github.com/avocado-framework/avocado/compare/0.33.0...0.34.0

[12] https://github.com/avocado-framework/avocado-vt/compare/0.33.0...0.34.0

[13] http://avocado-framework.readthedocs.org/en/latest/GetStartedGuide.html#installing-avocado

Sprint Theme: https://trello.com/c/QIbM3NvY/590-sprint-theme

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

0.33.0 Lemonade Joe or Horse Opera

Hello big farmers, backyard gardeners and supermarket reapers! Here is
a new announcement to all the appreciators of the most delicious green
fruit out here. Avocado release 0.33.0, aka, Lemonade Joe or Horse
Opera, is now out!

The main changes in Avocado are:

	Minor refinements to the Job Replay feature introduced in the last
release.

	More consistency naming for the status of tests that were not
executed. Namely, the TEST_NA has been renamed to SKIP all across
the internal code and user visible places.

	The avocado Test class has received some cleanups and
improvements. Some attributes that back the class implementation but
are not intended for users to rely upon are now hidden or removed.
Additionally some the internal attributes have been turned into
proper documented properties that users should feel confident to
rely upon. Expect more work on this area, resulting in a cleaner
and leaner base Test class on the upcoming releases.

	The avocado command line application used to show the main app help
message even when help for a specific command was asked for. This
has now been fixed.

	It’s now possible to use the avocado process utility API to run
privileged commands transparently via SUDO. Just add the “sudo=True”
parameter to the API calls and have your system configured to allow
that command without asking interactively for a password.

	The software manager and service utility API now knows about
commands that require elevated privileges to be run, such as
installing new packages and starting and stopping services (as
opposed to querying packages and services status). Those utility
APIs have been integrated with the new SUDO features allowing
unprivileged users to install packages, start and stop services more
easily, given that the system is properly configured to allow that.

	A nasty “fork bomb” situation was fixed. It was caused when a SIMPLE
test written in Python used the Avocado’s “main()” function to run
itself.

	A bug that prevented SIMPLE tests from being run if Avocado was not
given the absolute path of the executable has been fixed.

	A cleaner internal API for registering test result classes has been
put into place. If you have written your own test result class,
please take a look at avocado.core.result.register_test_result_class.

	Our CI jobs now also do quick “smoke” checks on every new commit
(not only the PR’s branch HEAD) that are proposed on github.

	A new utility function, binary_from_shell_cmd, has been added to
process API allows to extract the executable to be run from complex
command lines, including ones that set shell variable names.

	There have been internal changes to how parameters, including the
internally used timeout parameter, are handled by the test loader.

	Test execution can now be PAUSED and RESUMED interactively! By
hitting CTRL+Z on the Avocado command line application, all processes
of the currently running test are PAUSED. By hitting CTRL+Z again,
they are RESUMED.

	The Remote/VM runners have received some refactors, and most of the
code that used to live on the result test classes have been moved
to the test runner classes. The original goal was to fix a bug, but
turns out test runners were more suitable to house some parts of the
needed functionality.

For a complete list of changes please check the Avocado changelog[1].

For Avocado-VT, there were also many changes, including:

	A new utility function, get_guest_service_status, to get service
status in a VM.

	A fix for ssh login timeout error on remote servers.

	Fixes for usb ehci on PowerPC.

	Fixes for the screenshot path, when on a remote host

	Added libvirt function to create volumes with by XML files

	Added utility function to get QEMU threads (get_qemu_threads)

And many other changes. Again, for a complete list of changes please
check the Avocado-VT changelog[2].

Install avocado

Instructions are available in our documentation on how to install
either with packages or from source[3].

Updated RPM packages are be available in the project repos for
Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Happy hacking and testing!

[1] https://github.com/avocado-framework/avocado/compare/0.32.0...0.33.0

[2] https://github.com/avocado-framework/avocado-vt/compare/0.32.0...0.33.0

[3] http://avocado-framework.readthedocs.org/en/latest/GetStartedGuide.html#installing-avocado

Sprint Theme: https://www.youtube.com/watch?v=H5Lg_14m-sM

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

0.32.0 Road Runner

Hi everyone! A new year brings a new Avocado release as the result of
Sprint #32: Avocado 0.32.0, aka, “Road Runner”.

The major changes introduced in the previous releases were put to
trial on this release cycle, and as a result, we have responded with
documentation updates and also many fixes. This release also marks the
introduction of a great feature by a new member of our team: Amador
Pahim brought us the Job Replay feature! Kudos!!!

So, for Avocado the main changes are:

	Job Replay: users can now easily re-run previous jobs by using the
–replay command line option. This will re-run the job with the same
tests, configuration and multiplexer variants that were used on the
origin one. By using –replay-test-status, users can, for example,
only rerun the failed tests of the previous job. For more check
our docs[1].

	Documentation changes in response to our users feedback, specially
regarding the setup.py install/develop requirement.

	Fixed the static detection of test methods when using repeated
names.

	Ported some Autotest tests to Avocado, now available on their own
repository[2]. More contributions here are very welcome!

For a complete list of changes please check the Avocado changelog[3].

For Avocado-VT, there were also many changes, including:

	Major documentation updates, making them simpler and more in sync
with the Avocado documentation style.

	Refactor of the code under the avocado_vt namespace. Previously
most of the code lived under the plugin file itself, now it
better resembles the structure in Avocado and the plugin files
are hopefully easier to grasp.

Again, for a complete list of changes please check the Avocado-VT
changelog[4].

Install avocado

Instructions are available in our documentation on how to install
either with packages or from source[5].

Updated RPM packages are be available in the project repos for
Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.32.0/Replay.html

[2] http://github.com/avocado-framework/avocado-misc-tests

[3] https://github.com/avocado-framework/avocado/compare/0.31.0...0.32.0

[4] https://github.com/avocado-framework/avocado-vt/compare/0.31.0...0.32.0

[5] http://avocado-framework.readthedocs.org/en/0.32.0/GetStartedGuide.html

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

0.31.0 Lucky Luke

Hi everyone! Right on time for the holidays, Avocado reaches the end
of Sprint 31, and together with it, we’re very happy to announce a brand
new release! This version brings stability fixes and improvements to
both Avocado and Avocado-VT, some new features and a major redesign of
our plugin architecture.

For Avocado the main changes are:

	It’s now possible to register callback functions to be executed when
all tests finish, that is, at the end of a particular job[1].

	The software manager utility library received a lot of love on the
Debian side of things. If you’re writing tests that install software
packages on Debian systems, you may be in for some nice treats and
much more reliable results.

	Passing malformed commands (such as ones that can not be properly
split by the standard shlex library) to the process utility library
is now better dealt with.

	The test runner code received some refactors and it’s a lot easier
to follow. If you want to understand how the Avocado test runner
communicates with the processes that run the test themselves, you
may have a much better code reading experience now.

	Updated inspektor to the latest and greatest, so that our code is
kept is shiny and good looking (and performing) as possible.

	Fixes to the utility GIT library when using a specific local branch
name.

	Changes that allow our selftest suite to run properly on virtualenvs.

	Proper installation requirements definition for Python 2.6 systems.

	A completely new plugin architecture[2]. Now we offload all plugin
discovery and loading to the Stevedore library. Avocado now defines
precise (and simpler) interfaces for plugin writers. Please be aware
that the public and documented interfaces for plugins, at the
moment, allows adding new commands to the avocado command line app,
or adding new options to existing commands. Other functionality can
be achived by “abusing” the core avocado API from within
plugins. Our goal is to expand the interfaces so that other areas of
the framework can be extended just as easily.

For a complete list of changes please check the Avocado changelog[3].

Avocado-VT received just too many fixes and improvements to
list. Please refer to the changelog[4] for more information.

Install avocado

Instructions are available in our documentation on how to install
either with packages or from source[5].

Within a couple of hours, updated RPM packages will be available in
the project repos for Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.31.0/ReferenceGuide.html#job-cleanup

[2] http://avocado-framework.readthedocs.org/en/0.31.0/Plugins.html

[3] https://github.com/avocado-framework/avocado/compare/0.30.0...0.31.0

[4] https://github.com/avocado-framework/avocado-vt/compare/0.30.0...0.31.0

[5] http://avocado-framework.readthedocs.org/en/0.31.0/GetStartedGuide.html

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

0.30.0 Jimmy’s Hall

Hello! Avocado reaches the end of Sprint 30, and with it, we have a new
release available! This version brings stability fixes and improvements
to both Avocado and Avocado-vt.

As software doesn’t spring out of life itself, we’d like to acknowledge
the major contributions by Lucas (AKA lmr) since the dawn of time for
Avocado (and earlier projects like Autotest and virt-test). Although
the Avocado team at Red Hat was hit by some changes, we’re already
extremely happy to see that this major contributor (and good friend)
has not gone too far.

Now back to the more informational part of the release notes. For Avocado
the main changes are:

	New RPM repository location, check the docs[1] for instructions on how
to install the latest releases

	Makefile rules for building RPMs are now based on mock, to ensure sound
dependencies

	Packaged versions are now available for Fedora 22, newly released Fedora
23, EL6 and EL7

	The software manager utility library now supports DNF

	The avocado test runner now supports a dry run mode, which allows users to
check how a job would be executed, including tests that would be found and
parameters that would be passed to it. This is currently complementary to
the avocado list command.

	The avocado test runner now supports running simple tests with parameters.
This may come in handy for simple use cases when Avocado will wrap a test
suite, but the test suite needs some command line arguments.

Avocado-vt also received many bugfixes[3]. Please refer to the changelog for
more information.

Install avocado

Instructions are available in our documentation on how to install either with
packages or from source[1].

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.30.0/GetStartedGuide.html

[2] https://github.com/avocado-framework/avocado/compare/0.29.0...0.30.0

[3] https://github.com/avocado-framework/avocado-vt/compare/0.29.0...0.30.0

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

0.29.0 Steven Universe

Hello! Avocado reaches the end of Sprint 29, and with it, we have a great
release coming! This version of avocado once brings new features and plenty
of bugfixes:

	The remote and VM plugins now work with –multiplex, so that you can use
both features in conjunction. * The VM plugin can now auto detect the IP of
a given libvirt domain you pass to it, reducing typing and providing an easier
and more pleasant experience. * Temporary directories are now properly cleaned
up and no re-creation of directories happens, making avocado more secure.

	Avocado docs are now also tagged by release. You can see the specific
documentation of this one at our readthedocs page [1]

	Test introspection/listing is safer: Now avocado does not load python
modules to introspect its contents, an alternative method, based on the
Python AST parser is used, which means now avocado will not load possible
badly written/malicious code at listing stage. You can find more about
that in our test resolution documentation [2]

	You can now specify low level loaders to avocado to customize your test
running experience. You can learn more about that in the Test Discovery
documentation [3]

	The usual many bugfixes and polishing commits. You can see the full
amount of 96 commits at [4]

For our Avocado VT plugin, the main changes are:

	The vt-bootstrap process is now more robust against users interrupting
previous bootstrap attempts

	Some issues with RPM install in RHEL hosts were fixed

	Issues with unsafe temporary directories were fixed, making the VT tests
more secure.

	Issues with unattended installed were fixed

	Now the address of the virbr0 bridge is properly auto detected, which means
that our unattended installation content server will work out of the box as
long as you have a working virbr0 bridge.

Install avocado

As usual, go to https://copr.fedoraproject.org/coprs/lmr/Autotest/ to install
our YUM/DNF repo and get the latest goodies!

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.29.0

[2] http://avocado-framework.readthedocs.org/en/0.29.0/ReferenceGuide.html#test-resolution

[3] http://avocado-framework.readthedocs.org/en/0.29.0/Loaders.html

[4] https://github.com/avocado-framework/avocado/compare/0.28.0...0.29.0

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

0.28.0 Jára Cimrman, The Investigation of the Missing Class Register

This release basically polishes avocado, fixing a number of small usability
issues and bugs, and debuts avocado-vt as the official virt-test replacement!

Let’s go with the changes from our last release, 0.27.0:

Changes in avocado:

	The avocado human output received another stream of tweaks and it’s more
compact, while still being informative. Here’s an example:

JOB ID : f2f5060440bd57cba646c1f223ec8c40d03f539b
JOB LOG : /home/user/avocado/job-results/job-2015-07-27T17.13-f2f5060/job.log
TESTS : 1
 (1/1) passtest.py:PassTest.test: PASS (0.00 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB HTML : /home/user/avocado/job-results/job-2015-07-27T17.13-f2f5060/html/results.html
TIME : 0.00 s

	The unittest system was completely revamped, paving the way for making
avocado self-testable! Stay tuned for what we have on store.

	Many bugfixes. Check [1] for more details.

Changes in avocado-vt:

	The Spice Test provider has been separated from tp-qemu, and changes
reflected in avocado-vt [2].

	A number of bugfixes found by our contributors in the process of moving
avocado-vt into the official virt-testing project. Check [3] for more
details.

See you in a few weeks for our next release! Happy testing!

The avocado development team

[1] https://github.com/avocado-framework/avocado/compare/0.27.0...0.28.0

[2] https://github.com/avocado-framework/avocado-vt/commit/fd9b29bbf77d7f0f3041e66a66517f9ba6b8bf48

[3] https://github.com/avocado-framework/avocado-vt/compare/0.27.0...0.28.0

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

0.27.1

Hi guys, we’re up to a new avocado release! It’s basically a bugfix release,
with a few usability tweaks.

	The avocado human output received some extra tweaks. Here’s how it looks
now:

$ avocado run passtest
JOB ID : f186c729dd234c8fdf4a46f297ff0863684e2955
JOB LOG : /home/lmr/avocado/job-results/job-2015-08-15T08.09-f186c72/job.log
TESTS : 1
(1/1) passtest.py:PassTest.test: PASS (0.00 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB HTML : /home/lmr/avocado/job-results/job-2015-08-15T08.09-f186c72/html/results.html
TIME : 0.00 s

	Bugfixes. You may refer to [1] for the full list of 58 commits.

Changes in avocado-vt:

	Bugfixes. In particular, a lot of issues related to –vt-type libvirt
were fixed and now that backend is fully functional.

News:

We, the people that bring you avocado will be at LinuxCon North America
2015 (Aug 17-19). If you are attending, please don’t forget to drop by
and say hello to yours truly (lmr). And of course, consider attending
my presentation on avocado [2].

[1] https://github.com/avocado-framework/avocado/compare/0.27.0...0.27.1

[2] http://sched.co/3Xh9

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

0.27.0 Terminator: Genisys

Hi guys, here I am, announcing yet another avocado release! The most
exciting news for this release is that our avocado-vt plugin was merged
with the virt-test project. The avocado-vt plugin will be very important
for QEMU/KVM/Libvirt developers, so the main avocado received updates
to better support the goal of having a good quality avocado-vt.

Changes in avocado:

	The avocado human output received some tweaks and it’s more compact,
while still being informative. Here’s an example:

JOB ID : f2f5060440bd57cba646c1f223ec8c40d03f539b
JOB LOG : /home/user/avocado/job-results/job-2015-07-27T17.13-f2f5060/job.log
JOB HTML : /home/user/avocado/job-results/job-2015-07-27T17.13-f2f5060/html/results.html
TESTS : 1
 (1/1) passtest.py:PassTest.test: PASS (0.00 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TIME : 0.00 s

	The avocado test loader was refactored and behaves more consistently in
different test loading scenarios.

	The utils API received new modules and functions:

	NEW avocado.utils.cpu: APIs related to CPU information on linux boxes [1]

	NEW avocado.utils.git: APIs to clone/update git repos [2]

	NEW avocado.utils.iso9660: Get information about ISO files [3]

	NEW avocado.utils.service: APIs to control services on linux boxes
(systemv and systemd) [4]

	NEW avocado.utils.output: APIs that help avocado based CLI programs to
display results to users [5]

	UPDATE avocado.utils.download: Add url_download_interactive

	UPDATE avocado.utils.download: Add new params to get_file

	Bugfixes. You may refer to [6] for the full list of 64 commits.

Changes in avocado-vt:

	Merged virt-test into avocado-vt. Basically, the virt-test core library
(virttest) replaced most uses of autotest by equivalent avocado API calls,
and its code was brought up to the virt-test repository [7]. This means,
among other things, that you can simply install avocado-vt through RPM and
enjoy all the virt tests without having to clone another repository manually
to bootstrap your tests. More details about the process will be sent on an
e-mail to the avocado and virt-test mailing lists. Please go to [7] for
instructions on how to get started with all our new tools.

See you in a couple of weeks for our next release! Happy testing!

[1] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.cpu

[2] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.git

[3] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.iso9660

[4] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.service

[5] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.output

[6] https://github.com/avocado-framework/avocado/compare/0.26.0...0.27.0

[7] https://github.com/avocado-framework/avocado-vt/commit/20dd39ef00db712f78419f07b10b8f8edbd19942

[8] http://avocado-vt.readthedocs.org/en/latest/GetStartedGuide.html

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

0.26.0 The Office

Hi guys, I’m here to announce avocado 0.26.0. This release was dedicated to
polish aspects of the avocado user experience, such as documentation and
behavior.

Changes

	Now avocado tests that raise exceptions that don’t inherit from
avocado.core.exceptions.TestBaseException now will be marked as ERRORs.
This change was made to make avocado to have clearly defined test
statuses. A new decorator, avocado.fail_on_error was added to let
arbitrary exceptions to raise errors, if users need a more relaxed behavior.

	The avocado.Test() utility method skip() now can only be called from inside
the setUp() method. This was made because by definition, if we get to the test
execution step, by definition it can’t be skipped anymore. It’s important to
keep the concepts clear and well separated if we want to give users a good
experience.

	More documentation polish and updates. Make sure you check out our
documentation website http://avocado-framework.readthedocs.org/en/latest/.

	A number of avocado command line options and help text was reviewed and
updated.

	A new, leaner and mobile friendly version of the avocado website is live.
Please check http://avocado-framework.github.io/ for more information.

	We have the first version of the avocado dashboard! avocado dashboard is
the initial version of an avocado web interface, and will serve as the
frontend to our testing database. You can check out a screenshot here:
https://cloud.githubusercontent.com/assets/296807/8536678/dc5da720-242a-11e5-921c-6abd46e0f51e.png

	And the usual bugfixes. You can take a look at the full list of 68
commits here: https://github.com/avocado-framework/avocado/compare/0.25.0...0.26.0

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Avocado 42.0 documentation

 	Release Notes

0.25.0 Blade

Hi guys, I’m here to announce the newest avocado release, 0.25.0. This is an
important milestone in avocado development, and we would like to invite
you to be a part of the development process, by contributing PRs, testing and
giving feedback on the test runner’s usability and new plugins we came up
with.

What to expect

This is the first release aimed for general use. We did our best to deliver
a coherent and enjoyable experience, but keep in mind that it’s a young
project, so please set your expectations accordingly. What is expected to work
well:

	Running avocado ‘instrumented’ tests

	Running arbitrary executables as tests

	Automatic test discovery and run of tests on directories

	xUnit/JSON report

Known Issues

	HTML report of test jobs with multiplexed tests has a minor naming display
issue that is scheduled to be fixed by next release.

	avocado-vt might fail to load if virt-test was not properly bootstrapped.
Make sure you always run bootstrap in the virt-test directory on any
virt-test git updates to prevent the issue. Next release will have more
mechanisms to give the user better error messages on tough to judge
situations (virt-test repo with stale or invalid config files that need
update).

Changes

	The Avocado API has been greatly streamlined. After a long discussion and
several rounds of reviews and planning, now we have a clear separation of
what is intended as functions useful for test developers and plugin/core
developers:

	avocado.core is intended for plugin/core developers. Things are more fluid
on this space, so that we can move fast with development

	avocado.utils is a generic library, with functions we found out to be
useful for a variety of tests and core code alike.

	avocado has some symbols exposed at its top level, with the test API:

	our Test() class, derived from the unittest.TestCase() class

	a main() entry point, similar to unittest.main()

	VERSION, that gives the user the avocado version (eg 0.25.0).

Those symbols and classes/APIs will be changed more carefully, and release
notes will certainly contain API update notices. In other words, we’ll be a
lot more mindful of changes in this area, to reduce the maintenance cost of
writing avocado tests.

We believe this more strict separation between the available APIs will help
test developers to quickly identify what they need for test development,
and reduce following a fast moving target, what usually happens when we have
a new project that does not have clear policies behind its API design.

	There’s a new plugin added to the avocado project: avocado-vt. This plugin
acts as a wrapper for the virt-test test suite
(https://github.com/autotest/virt-test), allowing people to use avocado to
list and run the tests available for that test suite. This allows people to
leverage a number of the new cool avocado features for the virt tests
themselves:

	HTML reports, a commonly asked feature for the virt-test suite. You can
see a screenshot of what the report looks like here:
https://cloud.githubusercontent.com/assets/296807/7406339/7699689e-eed7-11e4-9214-38a678c105ec.png

	You can run virt-tests on arbitrary order, and multiple instances of a
given test, something that is also currently not possible with the virt
test runner (also a commonly asked feature for the suite.

	System info collection. It’s a flexible feature, you get to configureeasily
what gets logged/recorded between tests.

	The avocado multiplexer (test matrix representation/generation system)
also received a lot of work and fixes during this release. One of the most
visible (and cool) features of 0.25.0 is the new, improved –tree
representation of the multiplexer file:

$ avocado multiplex examples/mux-environment.yaml -tc
 ┗━━ run
 ┣━━ hw
 ┃ ┣━━ cpu
 ┃ ┃ ╠══ intel
 ┃ ┃ ║ → cpu_CFLAGS: -march=core2
 ┃ ┃ ╠══ amd
 ┃ ┃ ║ → cpu_CFLAGS: -march=athlon64
 ┃ ┃ ╚══ arm
 ┃ ┃ → cpu_CFLAGS: -mabi=apcs-gnu -march=armv8-a -mtune=arm8
 ┃ ┗━━ disk
 ┃ ╠══ scsi
 ┃ ║ → disk_type: scsi
 ┃ ╚══ virtio
 ┃ → disk_type: virtio
 ┣━━ distro
 ┃ ╠══ fedora
 ┃ ║ → init: systemd
 ┃ ╚══ mint
 ┃ → init: systemv
 ┗━━ env
 ╠══ debug
 ║ → opt_CFLAGS: -O0 -g
 ╚══ prod
 → opt_CFLAGS: -O2

We hope you find the multiplexer useful and enjoyable.

	If an avocado plugin fails to load, due to factors such as missing
dependencies, environment problems and misconfiguration, in order to
notify users and make them mindful of what it takes to fix the root
causes for the loading errors, those errors are displayed in the
avocado stderr stream.

However, often we can’t fix the problem right now and don’t need
the constant stderr nagging. If that’s the case, you can set in your local
config file:

[plugins]
Suppress notification about broken plugins in the app standard error.
Add the name of each broken plugin you want to suppress the notification
in the list. The names can be easily seen from the stderr messages. Example:
avocado.core.plugins.htmlresult ImportError No module named pystache
add 'avocado.core.plugins.htmlresult' as an element of the list below.
skip_broken_plugin_notification = []

	Our documentation has received a big review, that led to a number of
improvements. Those can be seen online
(http://avocado-framework.readthedocs.org/en/latest/), but if you feel
so inclined, you can build the documentation for local viewing, provided
that you have the sphinx python package installed by executing:

$ make -C docs html

Of course, if you find places where our documentation needs
fixes/improvements, please send us a PR and we’ll gladly review it.

	As one would expect, many bugs were fixed. You can take a look at the full
list of 156 commits here:
https://github.com/avocado-framework/avocado/compare/0.24.0...0.25.0

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Avocado 42.0 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 avocado	

 	
 	
 avocado.core	

 	
 	
 avocado.core.app	

 	
 	
 avocado.core.data_dir	

 	
 	
 avocado.core.dispatcher	

 	
 	
 avocado.core.exceptions	

 	
 	
 avocado.core.exit_codes	

 	
 	
 avocado.core.job	

 	
 	
 avocado.core.job_id	

 	
 	
 avocado.core.jobdata	

 	
 	
 avocado.core.loader	

 	
 	
 avocado.core.multiplexer	

 	
 	
 avocado.core.output	

 	
 	
 avocado.core.parser	

 	
 	
 avocado.core.plugin_interfaces	

 	
 	
 avocado.core.remote	

 	
 	
 avocado.core.remote.result	

 	
 	
 avocado.core.remote.runner	

 	
 	
 avocado.core.remote.test	

 	
 	
 avocado.core.remoter	

 	
 	
 avocado.core.restclient	

 	
 	
 avocado.core.restclient.cli	

 	
 	
 avocado.core.restclient.cli.actions	

 	
 	
 avocado.core.restclient.cli.actions.base	

 	
 	
 avocado.core.restclient.cli.actions.server	

 	
 	
 avocado.core.restclient.cli.app	

 	
 	
 avocado.core.restclient.cli.args	

 	
 	
 avocado.core.restclient.cli.args.base	

 	
 	
 avocado.core.restclient.cli.args.server	

 	
 	
 avocado.core.restclient.cli.parser	

 	
 	
 avocado.core.restclient.connection	

 	
 	
 avocado.core.restclient.response	

 	
 	
 avocado.core.result	

 	
 	
 avocado.core.runner	

 	
 	
 avocado.core.safeloader	

 	
 	
 avocado.core.settings	

 	
 	
 avocado.core.status	

 	
 	
 avocado.core.sysinfo	

 	
 	
 avocado.core.test	

 	
 	
 avocado.core.tree	

 	
 	
 avocado.core.version	

 	
 	
 avocado.core.virt	

 	
 	
 avocado.plugins	

 	
 	
 avocado.plugins.config	

 	
 	
 avocado.plugins.diff	

 	
 	
 avocado.plugins.distro	

 	
 	
 avocado.plugins.docker	

 	
 	
 avocado.plugins.envkeep	

 	
 	
 avocado.plugins.exec_path	

 	
 	
 avocado.plugins.gdb	

 	
 	
 avocado.plugins.jobscripts	

 	
 	
 avocado.plugins.journal	

 	
 	
 avocado.plugins.jsonresult	

 	
 	
 avocado.plugins.list	

 	
 	
 avocado.plugins.multiplex	

 	
 	
 avocado.plugins.plugins	

 	
 	
 avocado.plugins.remote	

 	
 	
 avocado.plugins.replay	

 	
 	
 avocado.plugins.run	

 	
 	
 avocado.plugins.sysinfo	

 	
 	
 avocado.plugins.tap	

 	
 	
 avocado.plugins.vm	

 	
 	
 avocado.plugins.wrapper	

 	
 	
 avocado.plugins.xunit	

 	
 	
 avocado.plugins.yaml_to_mux	

 	
 	
 avocado.utils	

 	
 	
 avocado.utils.archive	

 	
 	
 avocado.utils.asset	

 	
 	
 avocado.utils.astring	

 	
 	
 avocado.utils.aurl	

 	
 	
 avocado.utils.build	

 	
 	
 avocado.utils.cpu	

 	
 	
 avocado.utils.crypto	

 	
 	
 avocado.utils.data_factory	

 	
 	
 avocado.utils.data_structures	

 	
 	
 avocado.utils.debug	

 	
 	
 avocado.utils.disk	

 	
 	
 avocado.utils.distro	

 	
 	
 avocado.utils.download	

 	
 	
 avocado.utils.external	

 	
 	
 avocado.utils.external.gdbmi_parser	

 	
 	
 avocado.utils.external.spark	

 	
 	
 avocado.utils.filelock	

 	
 	
 avocado.utils.gdb	

 	
 	
 avocado.utils.genio	

 	
 	
 avocado.utils.git	

 	
 	
 avocado.utils.iso9660	

 	
 	
 avocado.utils.kernel	

 	
 	
 avocado.utils.linux_modules	

 	
 	
 avocado.utils.lv_utils	

 	
 	
 avocado.utils.memory	

 	
 	
 avocado.utils.network	

 	
 	
 avocado.utils.output	

 	
 	
 avocado.utils.partition	

 	
 	
 avocado.utils.path	

 	
 	
 avocado.utils.process	

 	
 	
 avocado.utils.runtime	

 	
 	
 avocado.utils.script	

 	
 	
 avocado.utils.service	

 	
 	
 avocado.utils.software_manager	

 	
 	
 avocado.utils.stacktrace	

 	
 	
 avocado.utils.wait	

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Avocado 42.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	

 	AccessDeniedPath (class in avocado.core.loader)

 	action() (in module avocado.core.restclient.cli.actions.base)

 	add() (avocado.utils.archive.ArchiveFile method)

 	

 	(avocado.utils.external.spark.GenericParser method)

 	add_arguments_on_all_modules() (avocado.core.restclient.cli.parser.Parser method)

 	add_arguments_on_module() (avocado.core.restclient.cli.parser.Parser method)

 	add_child() (avocado.core.tree.TreeNode method)

 	add_cmd() (avocado.core.sysinfo.SysInfo method)

 	add_file() (avocado.core.sysinfo.SysInfo method)

 	add_loader_options() (in module avocado.core.loader)

 	add_log_handler() (in module avocado.core.output)

 	add_output_plugin() (avocado.core.result.ResultProxy method)

 	add_repo() (avocado.utils.software_manager.AptBackend method)

 	

 	(avocado.utils.software_manager.YumBackend method)

 	(avocado.utils.software_manager.ZypperBackend method)

 	add_runner_failure() (in module avocado.core.runner)

 	add_watcher() (avocado.core.sysinfo.SysInfo method)

 	addRule() (avocado.utils.external.spark.GenericParser method)

 	AlreadyLocked

 	ambiguity() (avocado.utils.external.spark.GenericParser method)

 	analyze_unpickable_item() (in module avocado.utils.stacktrace)

 	App (class in avocado.core.restclient.cli.app)

 	append_amount() (avocado.utils.output.ProgressBar method)

 	apply_filters() (in module avocado.core.tree)

 	AptBackend (class in avocado.utils.software_manager)

 	ArchiveException

 	ArchiveFile (class in avocado.utils.archive)

 	ArgumentParser (class in avocado.core.parser)

 	ask() (in module avocado.utils.genio)

 	Asset (class in avocado.utils.asset)

 	augment() (avocado.utils.external.spark.GenericParser method)

 	avocado (module)

 	avocado.core (module)

 	avocado.core.app (module)

 	avocado.core.data_dir (module)

 	avocado.core.dispatcher (module)

 	avocado.core.exceptions (module)

 	avocado.core.exit_codes (module)

 	avocado.core.job (module)

 	avocado.core.job_id (module)

 	avocado.core.jobdata (module)

 	avocado.core.loader (module)

 	avocado.core.multiplexer (module)

 	avocado.core.output (module)

 	avocado.core.parser (module)

 	avocado.core.plugin_interfaces (module)

 	avocado.core.remote (module)

 	avocado.core.remote.result (module)

 	avocado.core.remote.runner (module)

 	avocado.core.remote.test (module)

 	avocado.core.remoter (module)

 	avocado.core.restclient (module)

 	avocado.core.restclient.cli (module)

 	avocado.core.restclient.cli.actions (module)

 	avocado.core.restclient.cli.actions.base (module)

 	avocado.core.restclient.cli.actions.server (module)

 	avocado.core.restclient.cli.app (module)

 	avocado.core.restclient.cli.args (module)

 	avocado.core.restclient.cli.args.base (module)

 	avocado.core.restclient.cli.args.server (module)

 	avocado.core.restclient.cli.parser (module)

 	avocado.core.restclient.connection (module)

 	avocado.core.restclient.response (module)

 	avocado.core.result (module)

 	avocado.core.runner (module)

 	avocado.core.safeloader (module)

 	avocado.core.settings (module)

 	avocado.core.status (module)

 	avocado.core.sysinfo (module)

 	avocado.core.test (module)

 	avocado.core.tree (module)

 	avocado.core.version (module)

 	avocado.core.virt (module)

 	

 	avocado.plugins (module)

 	avocado.plugins.config (module)

 	avocado.plugins.diff (module)

 	avocado.plugins.distro (module)

 	avocado.plugins.docker (module)

 	avocado.plugins.envkeep (module)

 	avocado.plugins.exec_path (module)

 	avocado.plugins.gdb (module)

 	avocado.plugins.jobscripts (module)

 	avocado.plugins.journal (module)

 	avocado.plugins.jsonresult (module)

 	avocado.plugins.list (module)

 	avocado.plugins.multiplex (module)

 	avocado.plugins.plugins (module)

 	avocado.plugins.remote (module)

 	avocado.plugins.replay (module)

 	avocado.plugins.run (module)

 	avocado.plugins.sysinfo (module)

 	avocado.plugins.tap (module)

 	avocado.plugins.vm (module)

 	avocado.plugins.wrapper (module)

 	avocado.plugins.xunit (module)

 	avocado.plugins.yaml_to_mux (module)

 	avocado.utils (module)

 	avocado.utils.archive (module)

 	avocado.utils.asset (module)

 	avocado.utils.astring (module)

 	avocado.utils.aurl (module)

 	avocado.utils.build (module)

 	avocado.utils.cpu (module)

 	avocado.utils.crypto (module)

 	avocado.utils.data_factory (module)

 	avocado.utils.data_structures (module)

 	avocado.utils.debug (module)

 	avocado.utils.disk (module)

 	avocado.utils.distro (module)

 	avocado.utils.download (module)

 	avocado.utils.external (module)

 	avocado.utils.external.gdbmi_parser (module)

 	avocado.utils.external.spark (module)

 	avocado.utils.filelock (module)

 	avocado.utils.gdb (module)

 	avocado.utils.genio (module)

 	avocado.utils.git (module)

 	avocado.utils.iso9660 (module)

 	avocado.utils.kernel (module)

 	avocado.utils.linux_modules (module)

 	avocado.utils.lv_utils (module)

 	avocado.utils.memory (module)

 	avocado.utils.network (module)

 	avocado.utils.output (module)

 	avocado.utils.partition (module)

 	avocado.utils.path (module)

 	avocado.utils.process (module)

 	avocado.utils.runtime (module)

 	avocado.utils.script (module)

 	avocado.utils.service (module)

 	avocado.utils.software_manager (module)

 	avocado.utils.stacktrace (module)

 	avocado.utils.wait (module)

 	AVOCADO_ALL_OK (in module avocado.core.exit_codes)

 	AVOCADO_DOCSTRING_TAG_RE (in module avocado.core.safeloader)

 	AVOCADO_FAIL (in module avocado.core.exit_codes)

 	AVOCADO_GENERIC_CRASH (in module avocado.core.exit_codes)

 	AVOCADO_JOB_FAIL (in module avocado.core.exit_codes)

 	AVOCADO_JOB_INTERRUPTED (in module avocado.core.exit_codes)

 	AVOCADO_TESTS_FAIL (in module avocado.core.exit_codes)

 	AvocadoApp (class in avocado.core.app)

 	AvocadoParam (class in avocado.core.multiplexer)

 	AvocadoParams (class in avocado.core.multiplexer)

B

 	

 	BaseBackend (class in avocado.utils.software_manager)

 	basedir (avocado.core.test.Test attribute)

 	

 	(avocado.Test attribute)

 	BaseResponse (class in avocado.core.restclient.response)

 	binary_from_shell_cmd() (in module avocado.utils.process)

 	bitlist_to_string() (in module avocado.utils.astring)

 	Borg (class in avocado.utils.data_structures)

 	BrokenSymlink (class in avocado.core.loader)

 	

 	build() (avocado.utils.kernel.KernelBuild method)

 	buildASTNode() (avocado.utils.external.spark.GenericASTBuilder method)

 	buildTree() (avocado.utils.external.spark.GenericParser method)

 	BUILTIN (in module avocado.utils.linux_modules)

 	BUILTIN_STREAM_SETS (in module avocado.core.output)

 	BUILTIN_STREAMS (in module avocado.core.output)

C

 	

 	cache_dirs (avocado.core.test.Test attribute)

 	

 	(avocado.Test attribute)

 	CallbackRegister (class in avocado.utils.data_structures)

 	can_sudo() (in module avocado.utils.process)

 	causal() (avocado.utils.external.spark.GenericParser method)

 	CHECK_FILE (avocado.utils.distro.Probe attribute)

 	CHECK_FILE_CONTAINS (avocado.utils.distro.Probe attribute)

 	CHECK_FILE_DISTRO_NAME (avocado.utils.distro.Probe attribute)

 	check_installed() (avocado.utils.software_manager.DpkgBackend method)

 	

 	(avocado.utils.software_manager.RpmBackend method)

 	check_kernel_config() (in module avocado.utils.linux_modules)

 	check_min_version() (avocado.core.restclient.connection.Connection method)

 	check_name_for_file() (avocado.utils.distro.Probe method)

 	check_name_for_file_contains() (avocado.utils.distro.Probe method)

 	check_release() (avocado.utils.distro.Probe method)

 	check_remote_avocado() (avocado.core.remote.RemoteTestRunner method)

 	

 	(avocado.core.remote.runner.RemoteTestRunner method)

 	check_test() (avocado.core.result.Result method)

 	

 	(avocado.core.result.ResultProxy method)

 	check_version() (avocado.utils.distro.Probe method)

 	

 	(in module avocado.utils.kernel)

 	CHECK_VERSION_REGEX (avocado.utils.distro.Probe attribute)

 	checkout() (avocado.utils.git.GitRepoHelper method)

 	clean_tmp_files() (in module avocado.core.data_dir)

 	cleanup() (avocado.plugins.docker.DockerRemoter method)

 	CLI (class in avocado.core.plugin_interfaces)

 	cli_cmd() (avocado.utils.gdb.GDB method)

 	CLICmd (class in avocado.core.plugin_interfaces)

 	CLICmdDispatcher (class in avocado.core.dispatcher)

 	CLIDispatcher (class in avocado.core.dispatcher)

 	close() (avocado.core.output.Paginator method)

 	

 	(avocado.core.output.StdOutput method)

 	(avocado.plugins.docker.DockerRemoter method)

 	(avocado.utils.archive.ArchiveFile method)

 	(avocado.utils.iso9660.Iso9660IsoRead method)

 	(avocado.utils.iso9660.Iso9660Mount method)

 	close_log_file() (in module avocado.utils.genio)

 	cmd() (avocado.utils.gdb.GDB method)

 	

 	(avocado.utils.gdb.GDBRemote method)

 	cmd_exists() (avocado.utils.gdb.GDB method)

 	CmdError

 	CmdNotFoundError

 	CmdResult (class in avocado.utils.process)

 	collect_sysinfo() (in module avocado.core.sysinfo)

 	Collectible (class in avocado.core.sysinfo)

 	

 	collectRules() (avocado.utils.external.spark.GenericParser method)

 	COLOR_BLUE (avocado.core.output.TermSupport attribute)

 	COLOR_DARKGREY (avocado.core.output.TermSupport attribute)

 	COLOR_GREEN (avocado.core.output.TermSupport attribute)

 	COLOR_RED (avocado.core.output.TermSupport attribute)

 	COLOR_YELLOW (avocado.core.output.TermSupport attribute)

 	Command (class in avocado.core.sysinfo)

 	compare_matrices() (in module avocado.utils.data_structures)

 	compress() (in module avocado.utils.archive)

 	computeNull() (avocado.utils.external.spark.GenericParser method)

 	Config (class in avocado.plugins.config)

 	ConfigFileNotFound

 	configure() (avocado.core.plugin_interfaces.CLI method)

 	

 	(avocado.core.plugin_interfaces.CLICmd method)

 	(avocado.plugins.config.Config method)

 	(avocado.plugins.diff.Diff method)

 	(avocado.plugins.distro.Distro method)

 	(avocado.plugins.docker.Docker method)

 	(avocado.plugins.envkeep.EnvKeep method)

 	(avocado.plugins.gdb.GDB method)

 	(avocado.plugins.journal.Journal method)

 	(avocado.plugins.jsonresult.JSONCLI method)

 	(avocado.plugins.list.List method)

 	(avocado.plugins.multiplex.Multiplex method)

 	(avocado.plugins.plugins.Plugins method)

 	(avocado.plugins.remote.Remote method)

 	(avocado.plugins.replay.Replay method)

 	(avocado.plugins.run.Run method)

 	(avocado.plugins.sysinfo.SysInfo method)

 	(avocado.plugins.tap.TAP method)

 	(avocado.plugins.vm.VM method)

 	(avocado.plugins.wrapper.Wrapper method)

 	(avocado.plugins.xunit.XUnitCLI method)

 	(avocado.plugins.yaml_to_mux.YamlToMux method)

 	(avocado.utils.kernel.KernelBuild method)

 	connect() (avocado.core.virt.Hypervisor method)

 	

 	(avocado.utils.gdb.GDB method)

 	(avocado.utils.gdb.GDBRemote method)

 	Connection (class in avocado.core.restclient.connection)

 	ConnectionError

 	Control (class in avocado.core.tree)

 	CONTROL_END (avocado.core.output.TermSupport attribute)

 	convert_systemd_target_to_runlevel() (in module avocado.utils.service)

 	convert_sysv_runlevel() (in module avocado.utils.service)

 	convert_value_type() (in module avocado.core.settings)

 	copy() (avocado.utils.iso9660.Iso9660IsoRead method)

 	

 	(avocado.utils.iso9660.Iso9660Mount method)

 	cpu_has_flags() (in module avocado.utils.cpu)

 	cpu_online_list() (in module avocado.utils.cpu)

 	create() (in module avocado.utils.archive)

 	create_and_wait_on_resume_fifo() (avocado.utils.process.GDBSubProcess method)

 	create_from_yaml() (in module avocado.plugins.yaml_to_mux)

 	create_job_logs_dir() (in module avocado.core.data_dir)

 	create_snapshot() (avocado.core.virt.VM method)

 	create_unique_job_id() (in module avocado.core.job_id)

 	CURRENT_JOB (in module avocado.utils.runtime)

 	CURRENT_TEST (in module avocado.utils.runtime)

 	CURRENT_WRAPPER (in module avocado.utils.process)

D

 	

 	Daemon (class in avocado.core.sysinfo)

 	data_inject() (avocado.core.multiplexer.Mux method)

 	data_merge() (avocado.core.multiplexer.Mux method)

 	datadir (avocado.core.test.Test attribute)

 	

 	(avocado.Test attribute)

 	default() (avocado.utils.external.spark.GenericASTTraversal method)

 	DEFAULT_BREAK (avocado.utils.gdb.GDB attribute)

 	DEFAULT_MODE (in module avocado.utils.script)

 	default_params (avocado.core.test.Test attribute)

 	

 	(avocado.Test attribute)

 	DEFAULT_TIMEOUT (avocado.core.runner.TestRunner attribute)

 	del_break() (avocado.utils.gdb.GDB method)

 	delete_snapshot() (avocado.core.virt.VM method)

 	deriveEpsilon() (avocado.utils.external.spark.GenericParser method)

 	description (avocado.core.plugin_interfaces.CLICmd attribute)

 	

 	(avocado.plugins.config.Config attribute)

 	(avocado.plugins.diff.Diff attribute)

 	(avocado.plugins.distro.Distro attribute)

 	(avocado.plugins.docker.Docker attribute)

 	(avocado.plugins.envkeep.EnvKeep attribute)

 	(avocado.plugins.exec_path.ExecPath attribute)

 	(avocado.plugins.gdb.GDB attribute)

 	(avocado.plugins.jobscripts.JobScripts attribute)

 	(avocado.plugins.journal.Journal attribute)

 	(avocado.plugins.jsonresult.JSONCLI attribute)

 	(avocado.plugins.jsonresult.JSONResult attribute)

 	(avocado.plugins.list.List attribute)

 	(avocado.plugins.multiplex.Multiplex attribute)

 	(avocado.plugins.plugins.Plugins attribute)

 	(avocado.plugins.remote.Remote attribute)

 	(avocado.plugins.replay.Replay attribute)

 	(avocado.plugins.run.Run attribute)

 	(avocado.plugins.sysinfo.SysInfo attribute)

 	(avocado.plugins.tap.TAP attribute)

 	(avocado.plugins.vm.VM attribute)

 	(avocado.plugins.wrapper.Wrapper attribute)

 	(avocado.plugins.xunit.XUnitCLI attribute)

 	(avocado.plugins.xunit.XUnitResult attribute)

 	(avocado.plugins.yaml_to_mux.YamlToMux attribute)

 	detach() (avocado.core.tree.TreeNode method)

 	detect() (in module avocado.utils.distro)

 	Diff (class in avocado.plugins.diff)

 	disable() (avocado.core.output.TermSupport method)

 	disable_log_handler() (in module avocado.core.output)

 	disconnect() (avocado.utils.gdb.GDB method)

 	discover() (avocado.core.loader.ExternalLoader method)

 	

 	(avocado.core.loader.FileLoader method)

 	(avocado.core.loader.TestLoader method)

 	(avocado.core.loader.TestLoaderProxy method)

 	

 	dispatch_action() (avocado.core.restclient.cli.app.App method)

 	Dispatcher (class in avocado.core.dispatcher)

 	display_data_size() (in module avocado.utils.output)

 	Distro (class in avocado.plugins.distro)

 	DISTRO_PKG_INFO_LOADERS (in module avocado.plugins.distro)

 	DistroDef (class in avocado.plugins.distro)

 	DistroPkgInfoLoader (class in avocado.plugins.distro)

 	DistroPkgInfoLoaderDeb (class in avocado.plugins.distro)

 	DistroPkgInfoLoaderRpm (class in avocado.plugins.distro)

 	DnfBackend (class in avocado.utils.software_manager)

 	Docker (class in avocado.plugins.docker)

 	DockerRemoter (class in avocado.plugins.docker)

 	DockerTestRunner (class in avocado.plugins.docker)

 	domains (avocado.core.virt.Hypervisor attribute)

 	download() (avocado.utils.kernel.KernelBuild method)

 	DpkgBackend (class in avocado.utils.software_manager)

 	draw() (avocado.utils.output.ProgressBar method)

 	drop_caches() (in module avocado.utils.memory)

 	DryRunTest (class in avocado.core.test)

E

 	

 	early_start() (in module avocado.core.output)

 	early_status (avocado.core.runner.TestStatus attribute)

 	emit() (avocado.core.output.MemStreamHandler method)

 	

 	(avocado.core.output.ProgressStreamHandler method)

 	enable_outputs() (avocado.core.output.StdOutput method)

 	enable_paginator() (avocado.core.output.StdOutput method)

 	enable_stderr() (avocado.core.output.StdOutput method)

 	enabled() (avocado.core.dispatcher.Dispatcher method)

 	end_job_hook() (avocado.core.sysinfo.SysInfo method)

 	end_test() (avocado.core.result.HumanResult method)

 	

 	(avocado.core.result.Result method)

 	(avocado.core.result.ResultProxy method)

 	(avocado.plugins.journal.ResultJournal method)

 	(avocado.plugins.tap.TAPResult method)

 	end_test_hook() (avocado.core.sysinfo.SysInfo method)

 	end_tests() (avocado.core.result.HumanResult method)

 	

 	(avocado.core.result.Result method)

 	(avocado.core.result.ResultProxy method)

 	(avocado.plugins.journal.ResultJournal method)

 	(avocado.plugins.tap.TAPResult method)

 	environment (avocado.core.tree.TreeNode attribute)

 	

 	EnvKeep (class in avocado.plugins.envkeep)

 	error() (avocado.core.parser.ArgumentParser method)

 	

 	(avocado.Test method)

 	(avocado.core.test.Test method)

 	(avocado.utils.external.spark.GenericParser method)

 	(avocado.utils.external.spark.GenericScanner method)

 	error_str() (avocado.core.output.TermSupport method)

 	ESCAPE_CODES (avocado.core.output.TermSupport attribute)

 	ExecPath (class in avocado.plugins.exec_path)

 	execute() (avocado.utils.git.GitRepoHelper method)

 	execute_cmd() (avocado.core.test.SimpleTest method)

 	exit() (avocado.utils.gdb.GDB method)

 	

 	(avocado.utils.gdb.GDBServer method)

 	ExternalLoader (class in avocado.core.loader)

 	ExternalRunnerTest (class in avocado.core.test)

 	extract() (avocado.utils.archive.ArchiveFile method)

 	

 	(in module avocado.utils.archive)

F

 	

 	fail() (avocado.core.test.Test method)

 	

 	(avocado.Test method)

 	fail_header_str() (avocado.core.output.TermSupport method)

 	fail_on() (in module avocado)

 	

 	(in module avocado.core.exceptions)

 	fail_str() (avocado.core.output.TermSupport method)

 	fake_outputs() (avocado.core.output.StdOutput method)

 	fetch() (avocado.utils.asset.Asset method)

 	

 	(avocado.utils.git.GitRepoHelper method)

 	fetch_asset() (avocado.core.test.Test method)

 	

 	(avocado.Test method)

 	FileLoader (class in avocado.core.loader)

 	FileLock (class in avocado.utils.filelock)

 	filename (avocado.core.test.ExternalRunnerTest attribute)

 	

 	(avocado.Test attribute)

 	(avocado.core.test.SimpleTest attribute)

 	(avocado.core.test.Test attribute)

 	FileOrStdoutAction (class in avocado.core.parser)

 	filter() (avocado.core.output.FilterInfoAndLess method)

 	

 	(avocado.core.output.FilterWarnAndMore method)

 	FilteredOut (class in avocado.core.loader)

 	

 	FilterInfoAndLess (class in avocado.core.output)

 	FilterWarnAndMore (class in avocado.core.output)

 	finalState() (avocado.utils.external.spark.GenericParser method)

 	find_class_and_methods() (in module avocado.core.safeloader)

 	find_command() (in module avocado.utils.path)

 	find_domain_by_name() (avocado.core.virt.Hypervisor method)

 	find_free_port() (in module avocado.utils.network)

 	find_free_ports() (in module avocado.utils.network)

 	finish() (avocado.core.parser.Parser method)

 	

 	(avocado.core.runner.TestStatus method)

 	flush() (avocado.core.output.LoggingFile method)

 	

 	(avocado.core.output.MemStreamHandler method)

 	foundMatch() (avocado.utils.external.spark.GenericASTMatcher method)

 	freememtotal() (in module avocado.utils.memory)

 	freespace() (in module avocado.utils.disk)

G

 	

 	GDB (class in avocado.plugins.gdb)

 	

 	(class in avocado.utils.gdb)

 	GDBRemote (class in avocado.utils.gdb)

 	GDBServer (class in avocado.utils.gdb)

 	GDBSubProcess (class in avocado.utils.process)

 	generate_core() (avocado.utils.process.GDBSubProcess method)

 	generate_gdb_connect_cmds() (avocado.utils.process.GDBSubProcess method)

 	generate_gdb_connect_sh() (avocado.utils.process.GDBSubProcess method)

 	generate_random_string() (in module avocado.utils.data_factory)

 	GenericASTBuilder (class in avocado.utils.external.spark)

 	GenericASTMatcher (class in avocado.utils.external.spark)

 	GenericASTTraversal (class in avocado.utils.external.spark)

 	GenericASTTraversalPruningException

 	GenericParser (class in avocado.utils.external.spark)

 	GenericScanner (class in avocado.utils.external.spark)

 	geometric_mean() (in module avocado.utils.data_structures)

 	get() (avocado.core.multiplexer.AvocadoParams method)

 	get_api_list() (avocado.core.restclient.connection.Connection method)

 	get_base_dir() (in module avocado.core.data_dir)

 	get_base_keywords() (avocado.core.loader.TestLoaderProxy method)

 	get_buddy_info() (in module avocado.utils.memory)

 	get_children_pids() (in module avocado.utils.process)

 	get_cid() (avocado.plugins.docker.DockerRemoter method)

 	get_cpu_arch() (in module avocado.utils.cpu)

 	get_cpu_vendor_name() (in module avocado.utils.cpu)

 	get_data_dir() (in module avocado.core.data_dir)

 	get_datafile_path() (in module avocado.core.data_dir)

 	get_decorator_mapping() (avocado.core.loader.ExternalLoader static method)

 	

 	(avocado.core.loader.FileLoader static method)

 	(avocado.core.loader.TestLoader static method)

 	(avocado.core.loader.TestLoaderProxy method)

 	get_default() (in module avocado.core.restclient.connection)

 	get_diskspace() (in module avocado.utils.lv_utils)

 	get_distro() (avocado.utils.distro.Probe method)

 	get_docstring_tag() (in module avocado.core.safeloader)

 	get_environment() (avocado.core.tree.TreeNode method)

 	get_extra_listing() (avocado.core.loader.TestLoader method)

 	

 	(avocado.core.loader.TestLoaderProxy method)

 	get_file() (in module avocado.utils.download)

 	get_first_line() (avocado.utils.path.PathInspector method)

 	get_huge_page_size() (in module avocado.utils.memory)

 	get_id() (in module avocado.core.jobdata)

 	

 	get_leaves() (avocado.core.tree.TreeNode method)

 	get_loaded_modules() (in module avocado.utils.linux_modules)

 	get_logs_dir() (in module avocado.core.data_dir)

 	get_mountpoint() (avocado.utils.partition.Partition method)

 	get_name_of_init() (in module avocado.utils.service)

 	get_named_tree_cls() (in module avocado.core.tree)

 	get_node() (avocado.core.tree.TreeNode method)

 	get_num_huge_pages() (in module avocado.utils.memory)

 	get_number_of_tests() (avocado.core.multiplexer.Mux method)

 	get_or_die() (avocado.core.multiplexer.AvocadoParam method)

 	get_output_file_name() (avocado.plugins.distro.Distro method)

 	get_package_info() (avocado.plugins.distro.DistroPkgInfoLoader method)

 	

 	(avocado.plugins.distro.DistroPkgInfoLoaderDeb method)

 	(avocado.plugins.distro.DistroPkgInfoLoaderRpm method)

 	get_package_management() (avocado.utils.software_manager.SystemInspector method)

 	get_packages_info() (avocado.plugins.distro.DistroPkgInfoLoader method)

 	get_parents() (avocado.core.tree.TreeNode method)

 	get_path() (avocado.core.tree.TreeNode method)

 	

 	(in module avocado.utils.path)

 	get_pid() (avocado.utils.process.SubProcess method)

 	get_repo() (in module avocado.utils.git)

 	get_resultsdir() (in module avocado.core.jobdata)

 	get_root() (avocado.core.tree.TreeNode method)

 	get_state() (avocado.core.remote.RemoteTest method)

 	

 	(avocado.Test method)

 	(avocado.core.remote.test.RemoteTest method)

 	(avocado.core.test.Test method)

 	get_stderr() (avocado.utils.process.SubProcess method)

 	get_stdout() (avocado.utils.process.SubProcess method)

 	get_sub_process_klass() (in module avocado.utils.process)

 	get_submodules() (in module avocado.utils.linux_modules)

 	get_test_dir() (in module avocado.core.data_dir)

 	get_tmp_dir() (in module avocado.core.data_dir)

 	get_top_commit() (avocado.utils.git.GitRepoHelper method)

 	get_top_tag() (avocado.utils.git.GitRepoHelper method)

 	get_type_label_mapping() (avocado.core.loader.ExternalLoader static method)

 	

 	(avocado.core.loader.FileLoader static method)

 	(avocado.core.loader.TestLoader static method)

 	(avocado.core.loader.TestLoaderProxy method)

 	get_url() (avocado.core.restclient.connection.Connection method)

 	get_value() (avocado.core.settings.Settings method)

 	git_cmd() (avocado.utils.git.GitRepoHelper method)

 	GitRepoHelper (class in avocado.utils.git)

 	goto() (avocado.utils.external.spark.GenericParser method)

 	gotoST() (avocado.utils.external.spark.GenericParser method)

 	gotoT() (avocado.utils.external.spark.GenericParser method)

H

 	

 	handle_break_hit() (avocado.utils.process.GDBSubProcess method)

 	handle_fatal_signal() (avocado.utils.process.GDBSubProcess method)

 	handler() (avocado.core.virt.Hypervisor static method)

 	has_exec_permission() (avocado.utils.path.PathInspector method)

 	hash_file() (in module avocado.utils.crypto)

 	

 	hash_wrapper() (in module avocado.utils.crypto)

 	header_str() (avocado.core.output.TermSupport method)

 	healthy_str() (avocado.core.output.TermSupport method)

 	HumanResult (class in avocado.core.result)

 	Hypervisor (class in avocado.core.virt)

I

 	

 	ignore_call() (in module avocado.plugins.replay)

 	init() (avocado.utils.git.GitRepoHelper method)

 	init_dir() (in module avocado.utils.path)

 	INIT_TIMEOUT (avocado.utils.gdb.GDBServer attribute)

 	initialize_connection() (avocado.core.restclient.cli.app.App method)

 	install() (avocado.utils.software_manager.AptBackend method)

 	

 	(avocado.utils.software_manager.YumBackend method)

 	(avocado.utils.software_manager.ZypperBackend method)

 	install_distro_packages() (in module avocado.utils.software_manager)

 	install_what_provides() (avocado.utils.software_manager.BaseBackend method)

 	INSTALLED_OUTPUT (avocado.utils.software_manager.DpkgBackend attribute)

 	interrupt_str() (avocado.core.output.TermSupport method)

 	InvalidJSONError

 	InvalidLoaderPlugin

 	InvalidOutputPlugin

 	InvalidResultResponseError

 	ip_address() (avocado.core.virt.VM method)

 	is_active (avocado.core.virt.VM attribute)

 	is_archive() (in module avocado.utils.archive)

 	is_docstring_tag_disable() (in module avocado.core.safeloader)

 	is_docstring_tag_enable() (in module avocado.core.safeloader)

 	is_empty() (avocado.utils.path.PathInspector method)

 	

 	is_leaf (avocado.core.tree.TreeNode attribute)

 	is_parsed() (avocado.core.multiplexer.Mux method)

 	is_port_free() (in module avocado.utils.network)

 	is_python() (avocado.utils.path.PathInspector method)

 	is_script() (avocado.utils.path.PathInspector method)

 	is_software_package() (avocado.plugins.distro.DistroPkgInfoLoader method)

 	

 	(avocado.plugins.distro.DistroPkgInfoLoaderDeb method)

 	(avocado.plugins.distro.DistroPkgInfoLoaderRpm method)

 	is_url() (in module avocado.utils.aurl)

 	isatty() (avocado.core.output.LoggingFile method)

 	isnullable() (avocado.utils.external.spark.GenericParser method)

 	iso9660() (in module avocado.utils.iso9660)

 	Iso9660IsoInfo (class in avocado.utils.iso9660)

 	Iso9660IsoRead (class in avocado.utils.iso9660)

 	Iso9660Mount (class in avocado.utils.iso9660)

 	iter_children_preorder() (avocado.core.tree.TreeNode method)

 	iter_leaves() (avocado.core.tree.TreeNode method)

 	iter_parents() (avocado.core.tree.TreeNode method)

 	iter_tabular_output() (in module avocado.utils.astring)

 	iteritems() (avocado.core.multiplexer.AvocadoParam method)

 	

 	(avocado.core.multiplexer.AvocadoParams method)

 	(avocado.core.tree.ValueDict method)

 	itertests() (avocado.core.multiplexer.Mux method)

J

 	

 	Job (class in avocado.core.job)

 	JobBaseException

 	JobError

 	JobPost (class in avocado.core.plugin_interfaces)

 	JobPre (class in avocado.core.plugin_interfaces)

 	JobPrePostDispatcher (class in avocado.core.dispatcher)

 	

 	JobScripts (class in avocado.plugins.jobscripts)

 	Journal (class in avocado.plugins.journal)

 	JournalctlWatcher (class in avocado.core.sysinfo)

 	JSONCLI (class in avocado.plugins.jsonresult)

 	JSONResult (class in avocado.plugins.jsonresult)

K

 	

 	KernelBuild (class in avocado.utils.kernel)

 	kill() (avocado.utils.process.SubProcess method)

 	

 	kill_process_by_pattern() (in module avocado.utils.process)

 	kill_process_tree() (in module avocado.utils.process)

L

 	

 	lazy_init_journal() (avocado.plugins.journal.ResultJournal method)

 	LazyProperty (class in avocado.utils.data_structures)

 	LinuxDistro (class in avocado.utils.distro)

 	List (class in avocado.plugins.list)

 	list() (avocado.plugins.list.TestLister method)

 	

 	(avocado.utils.archive.ArchiveFile method)

 	list_all() (avocado.utils.software_manager.DpkgBackend method)

 	

 	(avocado.utils.software_manager.RpmBackend method)

 	list_brief() (in module avocado.core.restclient.cli.actions.server)

 	list_files() (avocado.utils.software_manager.DpkgBackend method)

 	

 	(avocado.utils.software_manager.RpmBackend method)

 	list_mount_devices() (avocado.utils.partition.Partition static method)

 	list_mount_points() (avocado.utils.partition.Partition static method)

 	ListOfNodeObjects (class in avocado.plugins.yaml_to_mux)

 	load_config() (avocado.plugins.replay.Replay method)

 	load_distro() (in module avocado.plugins.distro)

 	load_from_tree() (in module avocado.plugins.distro)

 	load_module() (in module avocado.utils.linux_modules)

 	load_plugins() (avocado.core.loader.TestLoaderProxy method)

 	load_test() (avocado.core.loader.TestLoaderProxy method)

 	loaded_module_info() (in module avocado.utils.linux_modules)

 	LoaderError

 	LoaderUnhandledUrlError

 	LockFailed

 	log (avocado.core.output.MemStreamHandler attribute)

 	

 	log() (avocado.core.multiplexer.AvocadoParams method)

 	log_calls() (in module avocado.utils.debug)

 	log_calls_class() (in module avocado.utils.debug)

 	log_exc_info() (in module avocado.utils.stacktrace)

 	log_line() (in module avocado.utils.genio)

 	log_message() (in module avocado.utils.stacktrace)

 	log_plugin_failures() (in module avocado.core.output)

 	Logfile (class in avocado.core.sysinfo)

 	LoggingFile (class in avocado.core.output)

 	LogWatcher (class in avocado.core.sysinfo)

 	lv_check() (in module avocado.utils.lv_utils)

 	lv_create() (in module avocado.utils.lv_utils)

 	lv_list() (in module avocado.utils.lv_utils)

 	lv_mount() (in module avocado.utils.lv_utils)

 	lv_reactivate() (in module avocado.utils.lv_utils)

 	lv_remove() (in module avocado.utils.lv_utils)

 	lv_revert() (in module avocado.utils.lv_utils)

 	lv_revert_with_snapshot() (in module avocado.utils.lv_utils)

 	lv_take_snapshot() (in module avocado.utils.lv_utils)

 	lv_umount() (in module avocado.utils.lv_utils)

 	LVException

M

 	

 	main (in module avocado)

 	

 	(in module avocado.core.job)

 	make() (in module avocado.utils.build)

 	make_dir_and_populate() (in module avocado.utils.data_factory)

 	make_script() (in module avocado.utils.script)

 	make_temp_script() (in module avocado.utils.script)

 	makedir() (avocado.core.remoter.Remote method)

 	

 	(avocado.plugins.docker.DockerRemoter method)

 	makeNewRules() (avocado.utils.external.spark.GenericParser method)

 	makeRE() (avocado.utils.external.spark.GenericScanner method)

 	makeSet() (avocado.utils.external.spark.GenericParser method)

 	makeSet_fast() (avocado.utils.external.spark.GenericParser method)

 	makeState() (avocado.utils.external.spark.GenericParser method)

 	makeState0() (avocado.utils.external.spark.GenericParser method)

 	map_method() (avocado.core.dispatcher.JobPrePostDispatcher method)

 	

 	(avocado.core.dispatcher.ResultDispatcher method)

 	match() (avocado.utils.external.spark.GenericASTMatcher method)

 	match_r() (avocado.utils.external.spark.GenericASTMatcher method)

 	measure_duration() (in module avocado.utils.debug)

 	MemStreamHandler (class in avocado.core.output)

 	

 	memtotal() (in module avocado.utils.memory)

 	merge() (avocado.core.tree.TreeNode method)

 	

 	(avocado.core.tree.TreeNodeDebug method)

 	MissingTest (class in avocado.core.test)

 	mkfs() (avocado.utils.partition.Partition method)

 	mnt_dir (avocado.utils.iso9660.Iso9660Mount attribute)

 	MODULE (in module avocado.utils.linux_modules)

 	module_is_loaded() (in module avocado.utils.linux_modules)

 	modules_imported_as() (in module avocado.core.safeloader)

 	mount() (avocado.utils.partition.Partition method)

 	MOVE_BACK (avocado.core.output.TermSupport attribute)

 	MOVE_FORWARD (avocado.core.output.TermSupport attribute)

 	MOVES (avocado.core.output.Throbber attribute)

 	mtab (avocado.utils.partition.MtabLock attribute)

 	MtabLock (class in avocado.utils.partition)

 	Multiplex (class in avocado.plugins.multiplex)

 	Mux (class in avocado.core.multiplexer)

 	MuxTree (class in avocado.core.multiplexer)

N

 	

 	name (avocado.core.loader.ExternalLoader attribute)

 	

 	(avocado.core.loader.FileLoader attribute)

 	(avocado.core.loader.TestLoader attribute)

 	(avocado.core.plugin_interfaces.CLICmd attribute)

 	(avocado.core.virt.VM attribute)

 	(avocado.plugins.config.Config attribute)

 	(avocado.plugins.diff.Diff attribute)

 	(avocado.plugins.distro.Distro attribute)

 	(avocado.plugins.docker.Docker attribute)

 	(avocado.plugins.envkeep.EnvKeep attribute)

 	(avocado.plugins.exec_path.ExecPath attribute)

 	(avocado.plugins.gdb.GDB attribute)

 	(avocado.plugins.jobscripts.JobScripts attribute)

 	(avocado.plugins.journal.Journal attribute)

 	(avocado.plugins.jsonresult.JSONCLI attribute)

 	(avocado.plugins.jsonresult.JSONResult attribute)

 	(avocado.plugins.list.List attribute)

 	(avocado.plugins.multiplex.Multiplex attribute)

 	(avocado.plugins.plugins.Plugins attribute)

 	(avocado.plugins.remote.Remote attribute)

 	(avocado.plugins.replay.Replay attribute)

 	(avocado.plugins.run.Run attribute)

 	(avocado.plugins.sysinfo.SysInfo attribute)

 	(avocado.plugins.tap.TAP attribute)

 	(avocado.plugins.vm.VM attribute)

 	(avocado.plugins.wrapper.Wrapper attribute)

 	(avocado.plugins.xunit.XUnitCLI attribute)

 	(avocado.plugins.xunit.XUnitResult attribute)

 	(avocado.plugins.yaml_to_mux.YamlToMux attribute)

 	name_for_file() (avocado.utils.distro.Probe method)

 	name_for_file_contains() (avocado.utils.distro.Probe method)

 	NameNotTestNameError

 	no_default (avocado.core.settings.Settings attribute)

 	node_size() (in module avocado.utils.memory)

 	NoMatchError

 	

 	nonterminal() (avocado.utils.external.spark.GenericASTBuilder method)

 	NOT_SET (in module avocado.utils.linux_modules)

 	NotATest (class in avocado.core.test)

 	NotATestError

 	notify_progress() (avocado.core.result.HumanResult method)

 	

 	(avocado.core.result.ResultProxy method)

 	numa_nodes() (in module avocado.utils.memory)

O

 	

 	objects() (avocado.core.multiplexer.AvocadoParams method)

 	open() (avocado.utils.archive.ArchiveFile class method)

 	OptionValidationError

 	

 	ordered_list_unique() (in module avocado.utils.data_structures)

 	OutputList (class in avocado.core.tree)

 	OutputValue (class in avocado.core.tree)

P

 	

 	PACKAGE_TYPE (avocado.utils.software_manager.DpkgBackend attribute)

 	

 	(avocado.utils.software_manager.RpmBackend attribute)

 	PagerNotFoundError

 	Paginator (class in avocado.core.output)

 	parents (avocado.core.tree.TreeNode attribute)

 	parse() (avocado.core.multiplexer.Mux method)

 	

 	(avocado.utils.external.spark.GenericParser method)

 	(in module avocado.utils.external.gdbmi_parser)

 	parse_lsmod_for_module() (in module avocado.utils.linux_modules)

 	parseArgs() (avocado.core.job.TestProgram method)

 	Parser (class in avocado.core.parser)

 	

 	(class in avocado.core.restclient.cli.parser)

 	partial_str() (avocado.core.output.TermSupport method)

 	Partition (class in avocado.utils.partition)

 	PartitionError

 	pass_str() (avocado.core.output.TermSupport method)

 	path (avocado.core.tree.TreeNode attribute)

 	path_parent() (in module avocado.core.tree)

 	PathInspector (class in avocado.utils.path)

 	pid_exists() (in module avocado.utils.process)

 	ping() (avocado.core.restclient.connection.Connection method)

 	Plugin (class in avocado.core.plugin_interfaces)

 	Plugins (class in avocado.plugins.plugins)

 	poll() (avocado.utils.process.SubProcess method)

 	

 	PORT_RANGE (avocado.utils.gdb.GDBServer attribute)

 	position() (avocado.utils.external.spark.GenericScanner method)

 	post() (avocado.core.plugin_interfaces.JobPost method)

 	

 	(avocado.plugins.jobscripts.JobScripts method)

 	postorder() (avocado.utils.external.spark.GenericASTTraversal method)

 	pre() (avocado.core.plugin_interfaces.JobPre method)

 	

 	(avocado.plugins.jobscripts.JobScripts method)

 	predecessor() (avocado.utils.external.spark.GenericParser method)

 	preorder() (avocado.utils.external.spark.GenericASTTraversal method)

 	prepare_exc_info() (in module avocado.utils.stacktrace)

 	preprocess() (avocado.utils.external.spark.GenericASTBuilder method)

 	

 	(avocado.utils.external.spark.GenericASTMatcher method)

 	(avocado.utils.external.spark.GenericParser method)

 	print_records() (avocado.core.output.StdOutput method)

 	PRINTABLE (avocado.plugins.xunit.XUnitResult attribute)

 	Probe (class in avocado.utils.distro)

 	process() (in module avocado.utils.external.gdbmi_parser)

 	process_config_path() (avocado.core.settings.Settings method)

 	process_in_ptree_is_defunct() (in module avocado.utils.process)

 	ProgressBar (class in avocado.utils.output)

 	ProgressStreamHandler (class in avocado.core.output)

 	provides() (avocado.utils.software_manager.AptBackend method)

 	

 	(avocado.utils.software_manager.YumBackend method)

 	(avocado.utils.software_manager.ZypperBackend method)

 	prune() (avocado.utils.external.spark.GenericASTTraversal method)

R

 	

 	re_avocado_log (avocado.core.test.SimpleTest attribute)

 	read() (avocado.utils.iso9660.Iso9660IsoInfo method)

 	

 	(avocado.utils.iso9660.Iso9660IsoRead method)

 	(avocado.utils.iso9660.Iso9660Mount method)

 	read_all_lines() (in module avocado.utils.genio)

 	read_file() (in module avocado.utils.genio)

 	read_from_meminfo() (in module avocado.utils.memory)

 	read_from_numa_maps() (in module avocado.utils.memory)

 	read_from_smaps() (in module avocado.utils.memory)

 	read_from_vmstat() (in module avocado.utils.memory)

 	read_gdb_response() (avocado.utils.gdb.GDB method)

 	read_one_line() (in module avocado.utils.genio)

 	read_until_break() (avocado.utils.gdb.GDB method)

 	readline() (avocado.core.sysinfo.Collectible method)

 	reboot() (avocado.core.virt.VM method)

 	receive_files() (avocado.core.remoter.Remote method)

 	

 	(avocado.plugins.docker.DockerRemoter method)

 	(in module avocado.core.remoter)

 	reconfigure() (in module avocado.core.output)

 	record() (in module avocado.core.jobdata)

 	records (avocado.core.output.StdOutput attribute)

 	reflect() (avocado.utils.external.spark.GenericScanner method)

 	register() (avocado.utils.data_structures.CallbackRegister method)

 	register_plugin() (avocado.core.loader.TestLoaderProxy method)

 	register_probe() (in module avocado.utils.distro)

 	register_test_result_class() (in module avocado.core.result)

 	release() (avocado.utils.distro.Probe method)

 	remote (avocado.core.remote.runner.RemoteTestRunner attribute)

 	Remote (class in avocado.core.remoter)

 	

 	(class in avocado.plugins.remote)

 	remote_test_dir (avocado.core.remote.RemoteTestRunner attribute)

 	

 	(avocado.core.remote.runner.RemoteTestRunner attribute)

 	(avocado.plugins.docker.DockerTestRunner attribute)

 	remote_version_re (avocado.core.remote.RemoteTestRunner attribute)

 	

 	(avocado.core.remote.runner.RemoteTestRunner attribute)

 	RemoterError

 	RemoteResult (class in avocado.core.remote)

 	

 	(class in avocado.core.remote.result)

 	RemoteTest (class in avocado.core.remote)

 	

 	(class in avocado.core.remote.test)

 	RemoteTestRunner (class in avocado.core.remote)

 	

 	(class in avocado.core.remote.runner)

 	remove() (avocado.utils.script.Script method)

 	

 	(avocado.utils.script.TemporaryScript method)

 	(avocado.utils.software_manager.AptBackend method)

 	(avocado.utils.software_manager.YumBackend method)

 	(avocado.utils.software_manager.ZypperBackend method)

 	remove_repo() (avocado.utils.software_manager.AptBackend method)

 	

 	(avocado.utils.software_manager.YumBackend method)

 	(avocado.utils.software_manager.ZypperBackend method)

 	

 	render() (avocado.core.output.Throbber method)

 	

 	(avocado.core.plugin_interfaces.Result method)

 	(avocado.plugins.jsonresult.JSONResult method)

 	(avocado.plugins.xunit.XUnitResult method)

 	Replay (class in avocado.plugins.replay)

 	ReplaySkipTest (class in avocado.core.test)

 	report_state() (avocado.core.test.Test method)

 	

 	(avocado.Test method)

 	request() (avocado.core.restclient.connection.Connection method)

 	REQUIRED_ARGS (avocado.utils.gdb.GDB attribute)

 	

 	(avocado.utils.gdb.GDBServer attribute)

 	REQUIRED_DATA (avocado.core.restclient.response.BaseResponse attribute)

 	

 	(avocado.core.restclient.response.ResultResponse attribute)

 	reset() (avocado.core.virt.VM method)

 	resolve() (avocado.utils.external.spark.GenericASTMatcher method)

 	

 	(avocado.utils.external.spark.GenericParser method)

 	restore_snapshot() (avocado.core.virt.VM method)

 	Result (class in avocado.core.plugin_interfaces)

 	

 	(class in avocado.core.result)

 	ResultDispatcher (class in avocado.core.dispatcher)

 	ResultJournal (class in avocado.plugins.journal)

 	ResultProxy (class in avocado.core.result)

 	ResultResponse (class in avocado.core.restclient.response)

 	resume() (avocado.core.virt.VM method)

 	retrieve_args() (in module avocado.core.jobdata)

 	retrieve_cmdline() (in module avocado.core.jobdata)

 	retrieve_config() (in module avocado.core.jobdata)

 	retrieve_mux() (in module avocado.core.jobdata)

 	retrieve_pwd() (in module avocado.core.jobdata)

 	retrieve_urls() (in module avocado.core.jobdata)

 	revert_snapshot() (avocado.core.virt.VM method)

 	root (avocado.core.tree.TreeNode attribute)

 	rounded_memtotal() (in module avocado.utils.memory)

 	RpmBackend (class in avocado.utils.software_manager)

 	Run (class in avocado.plugins.run)

 	run() (avocado.core.app.AvocadoApp method)

 	

 	(avocado.core.job.Job method)

 	(avocado.core.plugin_interfaces.CLI method)

 	(avocado.core.plugin_interfaces.CLICmd method)

 	(avocado.core.remoter.Remote method)

 	(avocado.core.restclient.cli.app.App method)

 	(avocado.core.sysinfo.Command method)

 	(avocado.core.sysinfo.Daemon method)

 	(avocado.core.sysinfo.JournalctlWatcher method)

 	(avocado.core.sysinfo.LogWatcher method)

 	(avocado.core.sysinfo.Logfile method)

 	(avocado.plugins.config.Config method)

 	(avocado.plugins.diff.Diff method)

 	(avocado.plugins.distro.Distro method)

 	(avocado.plugins.docker.Docker method)

 	(avocado.plugins.docker.DockerRemoter method)

 	(avocado.plugins.envkeep.EnvKeep method)

 	(avocado.plugins.exec_path.ExecPath method)

 	(avocado.plugins.gdb.GDB method)

 	(avocado.plugins.journal.Journal method)

 	(avocado.plugins.jsonresult.JSONCLI method)

 	(avocado.plugins.list.List method)

 	(avocado.plugins.multiplex.Multiplex method)

 	(avocado.plugins.plugins.Plugins method)

 	(avocado.plugins.remote.Remote method)

 	(avocado.plugins.replay.Replay method)

 	(avocado.plugins.run.Run method)

 	(avocado.plugins.sysinfo.SysInfo method)

 	(avocado.plugins.tap.TAP method)

 	(avocado.plugins.vm.VM method)

 	(avocado.plugins.wrapper.Wrapper method)

 	(avocado.plugins.xunit.XUnitCLI method)

 	(avocado.plugins.yaml_to_mux.YamlToMux method)

 	(avocado.utils.data_structures.CallbackRegister method)

 	(avocado.utils.gdb.GDB method)

 	(avocado.utils.process.GDBSubProcess method)

 	(avocado.utils.process.SubProcess method)

 	(in module avocado.core.remoter)

 	(in module avocado.utils.process)

 	run_avocado() (avocado.core.test.Test method)

 	

 	(avocado.Test method)

 	run_make() (in module avocado.utils.build)

 	run_suite() (avocado.core.remote.RemoteTestRunner method)

 	

 	(avocado.core.remote.runner.RemoteTestRunner method)

 	(avocado.core.runner.TestRunner method)

 	run_test() (avocado.core.remote.RemoteTestRunner method)

 	

 	(avocado.core.remote.runner.RemoteTestRunner method)

 	(avocado.core.runner.TestRunner method)

 	runTests() (avocado.core.job.TestProgram method)

S

 	

 	safe_kill() (in module avocado.utils.process)

 	save() (avocado.utils.script.Script method)

 	save_distro() (in module avocado.plugins.distro)

 	scan() (in module avocado.utils.external.gdbmi_parser)

 	Script (class in avocado.utils.script)

 	send_files() (avocado.core.remoter.Remote method)

 	

 	(avocado.plugins.docker.DockerRemoter method)

 	(in module avocado.core.remoter)

 	send_gdb_command() (avocado.utils.gdb.GDB method)

 	send_signal() (avocado.utils.process.SubProcess method)

 	service_manager() (in module avocado.utils.service)

 	ServiceManager() (in module avocado.utils.service)

 	set_break() (avocado.utils.gdb.GDB method)

 	set_environment_dirty() (avocado.core.tree.TreeNode method)

 	set_extended_mode() (avocado.utils.gdb.GDBRemote method)

 	set_file() (avocado.utils.gdb.GDB method)

 	set_log_file_dir() (in module avocado.utils.genio)

 	set_num_huge_pages() (in module avocado.utils.memory)

 	Settings (class in avocado.core.settings)

 	SettingsError

 	SettingsValueError

 	setup() (avocado.core.remote.RemoteTestRunner method)

 	

 	(avocado.core.remote.VMTestRunner method)

 	(avocado.core.remote.runner.RemoteTestRunner method)

 	(avocado.core.remote.runner.VMTestRunner method)

 	setUp() (avocado.core.test.DryRunTest method)

 	

 	(avocado.core.test.SkipTest method)

 	(avocado.core.test.TimeOutSkipTest method)

 	setup() (avocado.plugins.docker.DockerTestRunner method)

 	setup_login() (avocado.core.virt.VM method)

 	shell_escape() (in module avocado.utils.astring)

 	should_run_inside_gdb() (in module avocado.utils.process)

 	should_run_inside_wrapper() (in module avocado.utils.process)

 	shutdown() (avocado.core.virt.VM method)

 	SimpleTest (class in avocado.core.test)

 	skip() (avocado.core.test.Test method)

 	

 	(avocado.Test method)

 	(avocado.utils.external.spark.GenericParser method)

 	skip_str() (avocado.core.output.TermSupport method)

 	SkipTest (class in avocado.core.test)

 	snapshots (avocado.core.virt.VM attribute)

 	SOFTWARE_COMPONENT_QRY (avocado.utils.software_manager.RpmBackend attribute)

 	software_packages (avocado.plugins.distro.DistroDef attribute)

 	software_packages_type (avocado.plugins.distro.DistroDef attribute)

 	SoftwareManager (class in avocado.utils.software_manager)

 	SoftwarePackage (class in avocado.plugins.distro)

 	

 	SOURCE (avocado.utils.kernel.KernelBuild attribute)

 	specific_service_manager() (in module avocado.utils.service)

 	SpecificServiceManager() (in module avocado.utils.service)

 	split_gdb_expr() (in module avocado.utils.process)

 	srcdir (avocado.core.test.Test attribute)

 	

 	(avocado.Test attribute)

 	start() (avocado.core.parser.Parser method)

 	

 	(avocado.core.virt.VM method)

 	(avocado.utils.process.SubProcess method)

 	start_job_hook() (avocado.core.sysinfo.SysInfo method)

 	start_no_ack_mode() (avocado.utils.gdb.GDBRemote method)

 	start_test() (avocado.core.result.HumanResult method)

 	

 	(avocado.core.result.Result method)

 	(avocado.core.result.ResultProxy method)

 	(avocado.plugins.journal.ResultJournal method)

 	start_test_hook() (avocado.core.sysinfo.SysInfo method)

 	start_tests() (avocado.core.result.HumanResult method)

 	

 	(avocado.core.result.Result method)

 	(avocado.core.result.ResultProxy method)

 	(avocado.plugins.tap.TAPResult method)

 	state (avocado.core.virt.VM attribute)

 	status (avocado.core.exceptions.JobBaseException attribute)

 	

 	(avocado.core.exceptions.JobError attribute)

 	(avocado.core.exceptions.NotATestError attribute)

 	(avocado.core.exceptions.OptionValidationError attribute)

 	(avocado.core.exceptions.TestAbortError attribute)

 	(avocado.core.exceptions.TestBaseException attribute)

 	(avocado.core.exceptions.TestError attribute)

 	(avocado.core.exceptions.TestFail attribute)

 	(avocado.core.exceptions.TestInterruptedError attribute)

 	(avocado.core.exceptions.TestNotFoundError attribute)

 	(avocado.core.exceptions.TestSetupFail attribute)

 	(avocado.core.exceptions.TestSkipError attribute)

 	(avocado.core.exceptions.TestTimeoutInterrupted attribute)

 	(avocado.core.exceptions.TestTimeoutSkip attribute)

 	(avocado.core.exceptions.TestWarn attribute)

 	status() (in module avocado.core.restclient.cli.actions.server)

 	STD_OUTPUT (in module avocado.core.output)

 	StdOutput (class in avocado.core.output)

 	STEPS (avocado.core.output.Throbber attribute)

 	stop() (avocado.core.sysinfo.Daemon method)

 	

 	(avocado.core.virt.VM method)

 	(avocado.utils.process.SubProcess method)

 	store_load_failure() (avocado.core.dispatcher.Dispatcher static method)

 	str_filesystem() (avocado.core.test.TestName method)

 	str_leaves_variant (avocado.core.multiplexer.AvocadoParam attribute)

 	str_unpickable_object() (in module avocado.utils.stacktrace)

 	string_safe_encode() (in module avocado.utils.astring)

 	string_to_bitlist() (in module avocado.utils.astring)

 	string_to_safe_path() (in module avocado.utils.astring)

 	strip_console_codes() (in module avocado.utils.astring)

 	SubProcess (class in avocado.utils.process)

 	suspend() (avocado.core.virt.VM method)

 	sys_v_init_command_generator() (in module avocado.utils.service)

 	sys_v_init_result_parser() (in module avocado.utils.service)

 	SysInfo (class in avocado.core.sysinfo)

 	

 	(class in avocado.plugins.sysinfo)

 	system() (in module avocado.utils.process)

 	system_output() (in module avocado.utils.process)

 	systemd_command_generator() (in module avocado.utils.service)

 	systemd_result_parser() (in module avocado.utils.service)

 	SystemInspector (class in avocado.utils.software_manager)

T

 	

 	t_default() (avocado.utils.external.spark.GenericScanner method)

 	tabular_output() (in module avocado.utils.astring)

 	TAP (class in avocado.plugins.tap)

 	TAPResult (class in avocado.plugins.tap)

 	tb_info() (in module avocado.utils.stacktrace)

 	tear_down() (avocado.core.remote.RemoteResult method)

 	

 	(avocado.core.remote.RemoteTestRunner method)

 	(avocado.core.remote.VMTestRunner method)

 	(avocado.core.remote.result.RemoteResult method)

 	(avocado.core.remote.runner.RemoteTestRunner method)

 	(avocado.core.remote.runner.VMTestRunner method)

 	(avocado.plugins.docker.DockerTestRunner method)

 	TemporaryScript (class in avocado.utils.script)

 	TERM_SUPPORT (in module avocado.core.output)

 	terminal() (avocado.utils.external.spark.GenericASTBuilder method)

 	terminate() (avocado.utils.process.SubProcess method)

 	TermSupport (class in avocado.core.output)

 	Test (class in avocado)

 	

 	(class in avocado.core.test)

 	test() (avocado.core.test.ExternalRunnerTest method)

 	

 	(avocado.core.test.MissingTest method)

 	(avocado.core.test.NotATest method)

 	(avocado.core.test.SimpleTest method)

 	(avocado.core.test.SkipTest method)

 	(avocado.core.test.TestError method)

 	test_suite (avocado.core.job.Job attribute)

 	TestAbortError

 	TestBaseException

 	TestError

 	

 	(class in avocado.core.test)

 	TestFail

 	TestInterruptedError

 	TestLister (class in avocado.plugins.list)

 	TestLoader (class in avocado.core.loader)

 	TestLoaderProxy (class in avocado.core.loader)

 	

 	TestName (class in avocado.core.test)

 	TestNotFoundError

 	TestProgram (class in avocado.core.job)

 	TestRunner (class in avocado.core.runner)

 	TestSetupFail

 	TestSkipError

 	TestStatus (class in avocado.core.runner)

 	TestTimeoutInterrupted

 	TestTimeoutSkip

 	TestWarn

 	thin_lv_create() (in module avocado.utils.lv_utils)

 	Throbber (class in avocado.core.output)

 	time_to_seconds() (in module avocado.utils.data_structures)

 	TimeOutSkipTest (class in avocado.core.test)

 	to_dict() (avocado.plugins.distro.DistroDef method)

 	

 	(avocado.plugins.distro.SoftwarePackage method)

 	to_json() (avocado.plugins.distro.DistroDef method)

 	

 	(avocado.plugins.distro.SoftwarePackage method)

 	tokenize() (avocado.utils.external.spark.GenericScanner method)

 	tree_view() (in module avocado.core.tree)

 	TreeNode (class in avocado.core.tree)

 	TreeNodeDebug (class in avocado.core.tree)

 	typestring() (avocado.utils.external.spark.GenericASTTraversal method)

 	

 	(avocado.utils.external.spark.GenericParser method)

U

 	

 	uncompress() (avocado.utils.kernel.KernelBuild method)

 	

 	(in module avocado.utils.archive)

 	UNDEFINED_BEHAVIOR_EXCEPTION (in module avocado.utils.process)

 	UNKNOWN (avocado.plugins.xunit.XUnitResult attribute)

 	unload_module() (in module avocado.utils.linux_modules)

 	unmount() (avocado.utils.partition.Partition method)

 	unregister() (avocado.utils.data_structures.CallbackRegister method)

 	update_amount() (avocado.utils.output.ProgressBar method)

 	update_percentage() (avocado.utils.output.ProgressBar method)

 	

 	upgrade() (avocado.utils.software_manager.AptBackend method)

 	

 	(avocado.utils.software_manager.YumBackend method)

 	(avocado.utils.software_manager.ZypperBackend method)

 	uptime() (avocado.core.remoter.Remote method)

 	URL (avocado.utils.kernel.KernelBuild attribute)

 	url_download() (in module avocado.utils.download)

 	url_download_interactive() (in module avocado.utils.download)

 	url_open() (in module avocado.utils.download)

 	usable_ro_dir() (in module avocado.utils.path)

 	usable_rw_dir() (in module avocado.utils.path)

V

 	

 	Value (class in avocado.plugins.yaml_to_mux)

 	ValueDict (class in avocado.core.tree)

 	version() (avocado.utils.distro.Probe method)

 	vg_check() (in module avocado.utils.lv_utils)

 	vg_create() (in module avocado.utils.lv_utils)

 	vg_list() (in module avocado.utils.lv_utils)

 	vg_ramdisk() (in module avocado.utils.lv_utils)

 	vg_ramdisk_cleanup() (in module avocado.utils.lv_utils)

 	

 	vg_remove() (in module avocado.utils.lv_utils)

 	VirtError

 	vm (avocado.core.remote.runner.VMTestRunner attribute)

 	VM (class in avocado.core.virt)

 	

 	(class in avocado.plugins.vm)

 	vm_connect() (in module avocado.core.virt)

 	VMResult (class in avocado.core.remote)

 	

 	(class in avocado.core.remote.result)

 	VMTestRunner (class in avocado.core.remote)

 	

 	(class in avocado.core.remote.runner)

W

 	

 	wait() (avocado.utils.process.SubProcess method)

 	wait_for() (in module avocado.utils.wait)

 	wait_for_early_status() (avocado.core.runner.TestStatus method)

 	wait_for_exit() (avocado.utils.process.GDBSubProcess method)

 	warn_header_str() (avocado.core.output.TermSupport method)

 	warn_str() (avocado.core.output.TermSupport method)

 	workdir (avocado.core.test.Test attribute)

 	

 	(avocado.Test attribute)

 	WRAP_PROCESS (in module avocado.utils.process)

 	

 	WRAP_PROCESS_NAMES_EXPR (in module avocado.utils.process)

 	Wrapper (class in avocado.plugins.wrapper)

 	WrapSubProcess (class in avocado.utils.process)

 	write() (avocado.core.output.LoggingFile method)

 	

 	(avocado.core.output.Paginator method)

 	write_file() (in module avocado.utils.genio)

 	write_one_line() (in module avocado.utils.genio)

 	writelines() (avocado.core.output.LoggingFile method)

X

 	

 	XUnitCLI (class in avocado.plugins.xunit)

 	

 	XUnitResult (class in avocado.plugins.xunit)

Y

 	

 	YamlToMux (class in avocado.plugins.yaml_to_mux)

 	

 	YumBackend (class in avocado.utils.software_manager)

Z

 	

 	ZypperBackend (class in avocado.utils.software_manager)

 Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

 _images/diagram.png
Is it a Python file?

Does it implement classes that inherit
Is it an executable file? from avocado.Test and functions whose
name start with test?

Not a test Run it (simple) Run it (instrumented)

search.html

 Navigation

 		
 index

 		
 modules |

 		Avocado 42.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2015, Red Hat.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

